Решение: S = 91 - площадь. P = ? - периметр. Площадь равна произведению сторон. 0) x1 + x2 = P - формула периметра. 1) X * Y = 91 - формула площади. 2) X = 6 + Y - вторая сторона на шесть раз больше другой. Подставим второе уравнение в первое. (6+Y)*Y = 91 6*Y + Y^2 = 91 - получили квадратное уравнение.(Y^2 - Y в квадрате), уравнения вида ax2+bx+c=0 Найдем его корни через дискриминант. D = b^2 - 4*a*c - формула дискриминанта. D = 6^2 + 4*1*91 D = 400 Найдем корни теперь: X1,2 = (-b +/- D^1/2)/2a - формула нахождения корней т.е для x1 =(-b + D^1/2)/2a x2 = (-b - D^1/2)/2a Получаем X1 = 7 X2 = -13 Берем X1 =7 - он больше нуля. Подставляем теперь его в формулу 2 вместо Y. X = 6 + 7 Теперь ищем периметр P = 7 + 13; P = 20. Проверяем ответ 7 * 13 = 91.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Решите эти примеры, очень нужно. Лазил по всему интернету, ничего не нашел
Решение:
S = 91 - площадь.
P = ? - периметр.
Площадь равна произведению сторон.
0) x1 + x2 = P - формула периметра.
1) X * Y = 91 - формула площади.
2) X = 6 + Y - вторая сторона на шесть раз больше другой.
Подставим второе уравнение в первое.
(6+Y)*Y = 91
6*Y + Y^2 = 91 - получили квадратное уравнение.(Y^2 - Y в квадрате), уравнения вида ax2+bx+c=0
Найдем его корни через дискриминант.
D = b^2 - 4*a*c - формула дискриминанта.
D = 6^2 + 4*1*91
D = 400
Найдем корни теперь:
X1,2 = (-b +/- D^1/2)/2a - формула нахождения корней
т.е для x1 =(-b + D^1/2)/2a
x2 = (-b - D^1/2)/2a
Получаем X1 = 7
X2 = -13
Берем X1 =7 - он больше нуля.
Подставляем теперь его в формулу 2 вместо Y.
X = 6 + 7
Теперь ищем периметр P = 7 + 13; P = 20.
Проверяем ответ 7 * 13 = 91.