?>
Закон всемирного тяготения можно записать в виде F=\gamma дробь, числитель — m_1m_2, знаменатель — r в степени 2 , где F — сила притяжения между телами (в ньютонах), m_1 и m_2 — массы тел (в килограммах), r — расстояние между центрами масс (в метрах), а \gamma — гравитационная постоянная, равная 6.67 · 10−11 H·м2/кг2. Пользуясь формулой, найдите массу тела m_1 (в килограммах), если F=6, 003 Н, m_2 =6 умножить на 10 в степени 8 кг, а r=2м.
Ответы
Объяснение:
y=4x−(7/2)x²−(2/3)x³
y'=(4x−(7/2)x²−(2/3)x³)'=4-(7*2/2)х²⁻¹-(2*3/3)х²=4-7х-2х²
y''=(4-7х-2х²)'=-7-4х
4-7х-2х²=0
х₁ ₂ = (7±√(49-4*(-2)*4))/-4
х₁ ₂ = (7±√81)/-4
х₁ ₂ = (7±9)/-4
х₁ = (7-9)/-4 х ₂ = (7+9)/-4
х₁ = -2/-4 =1/2 х ₂ = 16/-4=4
y(х)''=-7-4х y(х)''=-7-4х
y(1/2)''=-7-4*1/2 y₂(-4)''=-7-4*(-4)
y(1/2)''=-7-5=-12 y₂(-4)''=-7+16=9
y₁ (1/2)''∠0 максимум 0 ∠ y₂(-4)'' минимум.
y₁ =4*0,5−(7/2)*0,25−(2/3)*0,125 y₂=4*(-4)−(7/2)*16−(2/3)*(-64 )
y₁ =1 целая и 1/24 y₂=-29 целых и 1/3
(0,5 ; 1 1/24) - максимум (-4; 29 1/3) - минимум