1. Построить график. Находим вершину параболы. Приводим к виду:
y = x² - 6*x +5 = (x² - 2*x*3 + 3²)-9 +5 = (x-3)² - 4
Получили уравнение ОБЫЧНОЙ ПАРАБОЛЫ ИКС КВАДРАТ, но с вершиной в точке А(3;-4)
Решив уравнение получаем нули функции - х1 = 1 и х2 = 5.
Рисунок с графиком к задаче в приложении.
ответы на вопросы:
1) У(0,5) = 1/4 - 6*0,5 +5 = 2,25 - ответ
2) Y(x) = -1
Решаем квадратное уравнение
x² - 6x - 6 = 0 и получаем: х1 ≈ 1,3 и х2 ≈ 4,7. (с ГРАФИКА).
Интервалы знакопостоянства.
Y>0 - X∈(-∞;-1]∪[5;+∞) - положительна.
Y<0 - X∈[-1;5] - отрицательна.
Внимание - важно. Функция непрерывная - квадратные скобки в написании интервалов у нулей функции.
Решив уравнение получаем нули функции - х1 = 1 и х2 = 5.
4. Возрастает после минимума - Х∈[3; +∞)
и убывает при Х∈(-∞;3]
Объяснение:
незачто!
ответ: 50 км/ч и 60 км/ч
Объяснение:
Пусть скорость второго-x, тогда скорость первого-x+10
Время первого автомобиля=300/x+10
Время второго автомобиля=300/x
Мы знаем, что второй автомобиль был в пути на 1 час больше, тогда составим уравнение:
300/x-300/x+10=1
(300x+3000-300x-x²-10x)/x²+10x=0
(-x²-10x+3000)/x²+10=0
(x²+10x-3000)/x²+10=0
Так ка на ноль делить нельзя, то это выражение равно нулю только при x²+10x-3000=0
Найдём дискриминант:
D=100+12000=√12100=110²
Найдём корни уравнения:
x1=(-10+110)/2=50
x2=(-10-110)/2<0( посторонний корень, так как скорость не может быть меньше нуля)
Скорость второго автомобиля мы обозначили за x, значит она равно 50 км/ч. Теперь найдём скорость первого:
50 км/ч+10 км/ч=60 км/ч
Поделитесь своими знаниями, ответьте на вопрос:
cos(p/4+x)-cos(p/4-x)=1
cos(p/4+x) = cospi/4*cosx - sinx*sinpi/4 = √2/2(cosx-sinx)
cos(p/4-x) = cospi/4*cosx + sinx*sinpi/4 =√2/2(cosx+sinx)
cos(p/4+x)-cos(p/4-x) = √2/2(cosx-sinx) - (√2/2(cosx+sinx)) = √2/2(cosx-sinx-cosx-sinx) = -√2/2 * sinx = -√2sinx
cos(p/4+x)-cos(p/4-x)=1 =>
-√2sinx =1
sinx= - √2/2
x=)^(k+1)) *pi/4+pi*k