2
y=√(x−3)−|x+1|
одз: х> =3
y'=1/(2√(x−(x+1)
1/(2√(x−(x+1)=0
при х> =3 sgn(x+1) =1
1/(2√(x−=0
2√(x−3)=1
√(x−3)=1/2
x−3=1/4
х=3+1/4
y(3+1/4)=√(3+1/4−3)−|3+1/4+1|=√(1/4)−|4+1/4|=1/2−4-1/4=-3,75
ответ: -3,75
ps
находим наибольшее, потому как наименьшего не существует
пример при х=3 получится 0-4=-4 - еще меньше, но среди вариантов такого нет
и вообще при стремлении х к бесконечности линейная функция убывает быстрее чем растет корень, поэтому наименьшего на самом деле нет, а
-3,75 - наибольшее
Поделитесь своими знаниями, ответьте на вопрос:
Найдите координаты точек пересечения графика линейного уравнения 3x-2y=6 с осями координат
5
y=kx+1 и y=kx^2−(k−3)x+k приравниваем, решаем и требуем чтобы было 2 корня d> 0
kx+1=kx^2−(k−3)x+k
kx^2-(k-3)x+k-kx-1=0
kx^2-(2k-3)x+k-1=0
d=(2k-3)^2-4k(k-1)=4k^2-12k+9-4k^2+4k=-8k+9> 0
8k< 9
k< 9/8
теперь y=kx+1 и y=(2k−1)x^2−2kx+k+9/4 приравниваем и требуем чтобы не было корней d< 0
kx+1=(2k−1)x^2−2kx+k+9/4
(2k−1)x^2−2kx+k+9/4-kx-1=0
(2k−1)x^2−3kx+k+5/4=0
d=(3k)^2-4(2k-1)(k+5/4)=9k^2-(2k-1)(4k+5)=9k^2-8k^2+4k-10k+5=k^2-6k+5=(k-1)(k-5)< 0
1< k< 5
пересекаем k< 9/8 и 1< k< 5 - ответ 1< k< 9/8
ответ 1< k< 9/8