Сначала надо нарисовать ускомую - это будет область, снизу ограниченная дугой параболы y=x^2-3*x, а сверху - отрезком прямой y=3*x-5.
Точки пересечения находим, приравняв левые части
x^2-3*x=3*x-5
Это квадратное уравнение, корни - это х=1 и х=5.
Площадь фигуры будет равна двойному интегралу: по х от 1 (нижний предел) до 5(верхний предел) .
и по у от x^2-3*x(нижний предел) до 3*x-5(верхний предел) .
Сначала интегрируем по у, получим 3*x-5-(x^2-3*x), т. е. -x^2+6*x-5.
Потом интегрируем по х,
получим неопределенный интеграл -x^3/3+3*x^2-5х, в который подставим верхний предел х=5 и нижний предел х=1, получим:
-5^3/3+3*5^2-5*5 - (-1^3/3+3*1^2-5*1)=32/3, то есть 10 2/3.
Графики функций у=kx+l и y=x²+bx+c при k= -3; l= -8; b=7; c=16 пересекаются в точках A(-4; 4) и B(-6; 10).
Объяснение:
у=kx+l y=x²+bx+c A(-4; 4); B(-6; 10)
1)Составим уравнение прямой у=kx+l по формуле:
(х-х₁)/(х₂-х₁) = (у-у₁)/(у₂-у₁)
Значения х и у - координаты точек.
х₁= -4 у₁=4
х₂= -6 у₂=10
Подставляем значения х и у в формулу:
(х-(-4)/(-6)-(-4) = (у-4)/(10-4)
(х+4)/(-2) = (у-4)/6 перемножаем крест-накрест, как в пропорции:
6х+24= -2у+8
2у= -6х+8-24
2у= -6х-16
у= -3х-8, искомое уравнение.
k= -3 l= -8.
2)y=x²+bx+c A(-4; 4); B(-6; 10)
Используя координаты данных точек, составим систему уравнений:
4=(-4)²+b*(-4)+c
10=(-6)²+b*(-6)+c
Произвести необходимые действия:
4=16-4b+c
10=36-6b+c
Выразим с через b в двух уравнениях:
-с=16-4b-4 -с=12-4b
-c=36-6b-10 -c=26-6b
Приравняем правые части уравнений, так как левые равны:
12-4b=26-6b
-4b+6b=26-12
2b=14
b=7
Теперь вычислим с:
-с=12-4b
-с=12-4*7
-с=12-28
-с= -16
с=16
Подставляем полученные значения b и c в уравнение:
у=x²+7x+16, искомое уравнение.
Поделитесь своими знаниями, ответьте на вопрос:
Один із суміжних кутів більший за другий на 12*. знайдіть градусну мірі цих кутів, , пліс до 28.05.13р
x+x+12=180
2x=168
x=84 - 1 угол
84+12=96 - 2 угол.