X(t)=10-4t; это равномерное движение; тело возвращается в т. отсчета.Когда оно вернется, x(t) будет равен 0; найдем это время. 10-4t=0, 4t=10, t=10/4=2,5c. ответ: через 2,5с.
Тимур Андраниковна634
04.10.2021
Я распишу подробно, формулами, в конце выйдем на ответ: длину нужно уменьшить в 4 раза. Мы знаем формулу периода математического маятника: T=2\pi*\sqrt\frac{l}{g};\\ Запишем ее для двух случаев, по условию, что T2=T1/2. T1=2\pi*\sqrt\frac{l1}{g};\\ \frac{T1}{2}=2\pi*\sqrt\frac{l2}{g};\\ Поделим первое уравнение на второе: \frac{T1}{\frac{T1}{2}}=\frac{2\pi*\sqrt\frac{l1}{g}}{2\pi*\sqrt\frac{l2}{g}};\\ 2={\sqrt{\frac{l1}{g}*{\frac{g}{l2};\\ Возводим и правую и левую часть в квадрат: 4=\frac{l1}{g}*\frac{g}{l2};\\ 4=\frac{l1}{l2};\\ 4l2=l1;\\ l2=\frac{l1}{4};\\ То есть, о чем я и говорил изначально, при умешьнении периода колебаний в 2 раза, длину маятника уменьшают в 4 раза.
d111180
04.10.2021
Я распишу подробно, формулами, в конце выйдем на ответ: длину нужно уменьшить в 4 раза. Мы знаем формулу периода математического маятника: T=2\pi*\sqrt\frac{l}{g};\\ Запишем ее для двух случаев, по условию, что T2=T1/2. T1=2\pi*\sqrt\frac{l1}{g};\\ \frac{T1}{2}=2\pi*\sqrt\frac{l2}{g};\\ Поделим первое уравнение на второе: \frac{T1}{\frac{T1}{2}}=\frac{2\pi*\sqrt\frac{l1}{g}}{2\pi*\sqrt\frac{l2}{g}};\\ 2={\sqrt{\frac{l1}{g}*{\frac{g}{l2};\\ Возводим и правую и левую часть в квадрат: 4=\frac{l1}{g}*\frac{g}{l2};\\ 4=\frac{l1}{l2};\\ 4l2=l1;\\ l2=\frac{l1}{4};\\ То есть, о чем я и говорил изначально, при умешьнении периода колебаний в 2 раза, длину маятника уменьшают в 4 раза.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Координата тела изменяется с течением времени согласно формуле x равно 10 минус 4t. в какой момент времени координата этого тела будет равна нулю
10-4t=0, 4t=10, t=10/4=2,5c.
ответ: через 2,5с.