Відповідь:
Основанием пирамиды является прямоугольный треугольник с катетом а и прилегающим к нему острым углом α. Две боковые грани, содержащие катеты этого треугольника, перпендикулярны плоскости основания, а третья наклонена к ней под углом β. Найдите объем пирамиды.
Пусть в данной пирамиде АВС - основание. угол С=90°, ВС=а, ∠АВС=α, MC⊥(ABC) – высота пирамиды. Угол между АВС и АМВ=β.
Формула объёма пирамиды V=S•H:3
Угол МНС - линейный угол угла между плоскостями основания и грани АМВ и равен углу между перпендикулярами, проведенными к одной точке на АВ.
МН - наклонная, перпендикулярна АВ, СН - её проекция на АВС.⇒ По т. о 3-х перпендикулярах угол СНВ=90°, а СН - высота ∆ АВС
S=a•b•sinα:2 ⇒
S(АВС)=AB•BC•sinα:2
АВ=ВС:cosα=a:cosα
S(АВС)=(a:cosα)•a•sinα:2=a²sinα:2cosα
H=MC=CH•tgβ
CH=BC•sinα=a•sinα
H=a•sinα•tgβ
V=(a²•sinα:2cosα)•a•sinα•tgβ:3⇒
Пояснення:
Один з кутів прямокутного трикутника, що лежить в освнові даної прямої призми 45 градусів, значить і другий кут дорівнює 45 градусів (90-45=45 або 180-90-45=45).
Два кути трикутника рівні, значить він рівнобедрений і катети трикутника між собою рівні.
a=b=6 см
ГІпотенуза по теоремі Піфагора дорівнює с=корінь(a^2+b^2)=корінь(6^2+6^2)=6*корінь(2)
Площа прямокутного трикутника дорівнює половині добутку катетів
S(ABC)=ab/2=6*6/2=18 кв.см
Обєм прямої призми дорівнює добітку площі основи на висоту
V=S(ABC)*h
тому
висота призми h=V/S(ABC)
h=108/18=6 см
Бічна поверхня призми - прямокутники, де довжина прямокутника - це одна із сторін прямокутного трикутника, ширина прямокутника - висота призми
Площа прямокутника добуток його довжини на ширину.
Площа бічної поверхні дорівнює сумі площ бічних граней
Sб=ah+bh+ch=(a+b+c)h
Sб=(6+6+6корінь(2))*6=6*6*(1+1+корінь(2))=36*(2+корінь(2))=72+36корінь(2) см
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Сторона основания правильной четырёхугольной пирамиды равна 4 см, а боковое ребро равно √17 см. найдите: а) высоту пирамиды; б) площадь полной поверхности пирамиды. если можно поподробнее на листе.
ответ:
объяснение:
а)основанием пирамиды служит квадрат, проекцией бокового ребра в √17 см, есть половина диагонали основания, которая равна а√2=4√2, а ее половина 2√2 см, тогда высота пирамиды может быть найдена как √((√17)²-(2√2)²)=√(17-8)=√9=3/см/
б)площадь полной поверхности состоит из площади боковой поверхности и площади основания. площадь основания равна 4²=16/см²/, а площадь боковой поверхности - это сумма четырех площадей треугольников со сторонами √17см; √17см и 4см. если провести из вершины пирамиды высоту на сторону основания, то можно найти эту апофему. она равна √((√17)²-(4/2)²)=√(17-4)=
√13, умножая теперь апофему ( это высота боковой грани правильной пирамиды) на основание, равное 4, деля на два и умножая на 4, получим площадь четырех равных треугольников,т.е. площадь боковой поверхности.
4*(4*√13 )/2= 8√13/см²/, а площадь полной поверхности равна
16+8√13 =8*(2+√13) / см²/
подробнее - на -