две пересекающиеся прямые kq и ак определяют единственную плоскость. следовательно, фигура akq лежит в одной плоскости и прямая aq, лежащая в плоскости α, параллельна прямой вм по признаку параллельности прямой и плоскости.
признак: если прямая, не принадлежащая плоскости (ab), параллельна какой-либо прямой, лежащей в этой плоскости (aq), то она параллельна данной плоскости (дано).
имеем подобные треугольники akq и bkm с коэффициентом подобия k=kb/ak=4/11 (так как если кв = 4х, а ва=7х, то ак = 11х).
из подобия имеем: aq=8*11/4= 22см. это ответ.
1) пусть ав-3х см, тогда вс-4х см. по условию р=70 см.
p=2(3x+4x)
2(3х+4х)=70
2*7х=70
х=70: (2*7)
х=5
ав=3*5=15см
вс=4*5=20см
ответ: ав=15см, вс=20см
2) рассмотрим △аво и △сдо
1) ав=сд
2) во=со
3) ао=од
следовательно δаво=δсдо по 3 сторонам или по 3 признаку.
∠аво=∠осд=40°
рассмотрим δвос и δаод
∠сво=∠всо=90-40=50°
∠вос=180-(∠сво+∠всо)
∠вос=180-(50+50)
∠вос=80°
∠вос=∠аод т.к. они вертикальные
∠аод=80°
ответ: ∠аод=80°
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренной трапеции abcd ab=cd=4 см, bc=6 см, ad=10см. найдите углы трапеции.