фактически сводится к нахождению координат вектора cd.
мы знаем, что сd перпендикулярно ab. и cd проходит через точку c.
условие перпендикулярности -> косинус угла между векторами cd и ab равен нулю.
формула косинуса угла между векторами -
ab={-1+5; 4-1}={4; 3}
cd={x2-3; y2-2}
составим уравнение прямой ав: (*)
подставляя вместо x1 и y1 в формулу косинуса 4 и 3 соответственно получим:
4(x2-3)+3(y2-2)=0
также точка d принадлежит прямой ab, а значит x2 и y2 удовлетворяют уравнению (*).
решаем полученную систему уравнений.
мне лень решать - сами решите. как найдёте x2 и y2 - подставьте их и найдите координаты вектора cd. зная координаты направляющего вектора и точку, через которую проходит прямая, легко составить уравнение прямой.
оно выглядит так: , где - координаты напрвляющего вектора (в нашем случае вектора cd), а х0 и у0 - координаты точки, через которую проходит прямая (в нашем случае с или d - на выбор)
подробно.
треугольники aod и boc подобны по свойству трапеции.площади подобных треугольников относятся, как квадраты коэффициента их подобия 25: 16=k² k=√(25: 16)=5: 4следовательно, основания трапеции относятся, как 5: 4обозначим высоту ᐃ вос=h₁высоту ᐃ аоd=h₂s аоd=h₂·аd: 2s вос=h₁·вс: 2
площадь трапеции равна произведению ее высоты на полусумму оснований:
высота трапеции нs abcd=н·(аd+вс): 2н=h₂+h₁s abcd =(h₁+h₂)·(аd+вс): 2==h₁·аd+h₂·аd+h1·вс+h₂·вс
1) применим свойство пропорции: произведение средних членов пропорции равно произведению крайних.h₂: h₁=5: 44h₂=5h₁ h₂=5h₁/4 s aod=h₂·аd: 2=5h₁/4·аd: 225=5h₁/4·аd: 2 умножим на два обе части уравнения12,5=5h₁/4·аd 5h₁/4 =12,5: adh₁: 4=2,5: adh₁·ad= 4·2,5 =10 см²
т.к. площади боковых треугольников у трапеции равны равны, то h₂·вс=10 см²
это: 2)h₂: h₁=5: 45h₁=4h₂h₁=4h₂/5 s вос=h₁·вс: 2=4h₂/5·вс: 2 16=4h₂/5·вс: 2 умножим на два обе части уравнения8=4h₂/5·вс 4h₂: 5=8: вс4h₂·вс=8·5=40h₂·вс=40: 4=10 см²3) подставим значения h₂·вс и h₁·ad в уравнение площади трапеции
s abcd=h₁·аd+25+16+h₂вс=41+=h₁·аd+h₂·вс =s abcd=10+25+16+10= 61 см
Поделитесь своими знаниями, ответьте на вопрос:
Треугольник abc = треугольнику por . ab = 5 см, bc = 6 см, ac = 7 см. найдите стороны треугольника por.