ЮрьевичКарпова1564
?>

2. Найти расстояние от точки О до прямых AB иВС., если OЕ=5.​

Геометрия

Ответы

Максим Павел

  і ми зустрічалися з різними рівняннями і будували їх графіки.

рівнянням фігури на площині в декартових координатах називається рівняння з двома змінними х і у, яке задовольняють координати будь-якої точки фігури, і навпаки: будь-які два числа, які задовольняють це рівняння, є координатами деякої точки цієї фігури.

яке ж рівняння має коло?

для того щоб скласти рівняння кола, згадаємо його властивість, що міститься в означенні кола: усі точки кола розміщені в одній площині з його центром і однаково від нього віддалені.

нехай центр кола м(а;   b), а радіус кола  r  (рис. 140).

 

 

позначимо на колі будь-яку точку а (х; у). відстань від точки м до точки а дорівнює  r, тобто  am  =  r, але за формулою відстані між двома точками маємо ам2 = (х – а)2 + (y  –  b)2, або  (x  –  a)2 + (y  –  b)2 =  r2. (1)

координати будь-якої точки цього кола задовольняють рівняння (1). правильно і те, що будь-яка точка, координати якої задовольняють рівняння (1), належить колу.

отже,  (x  –  a)2 + (y  –  b)2 =  r2  — рівняння кола. якщо центр кола (рис. 141) лежить у початку координат, то воно має рівняння х2 + у2 =  r2.

 

 

розглянемо рівняння (1), у якому х і у — змінні координати точок кола, а числа а і  b  — відповідно абсциса і ордината центра,  r  — радіус кола. отже, щоб записати рівняння кола, треба запам'ятати цю формулу і знати координати центра і радіус.

наприклад, нехай  m(-1; 2),  a  r  = 2, тоді рівняння кола  (x  +  1)2  +  (y  – 2)2  = 4.

 

виконання вправ

1)  які з точок: а(1; 2), в(3; 4), с(-4; 3),  d(0; 5),  f(5; -1)  —лежать на колі, рівняння якого х2 + у2 = 25? 2)  запишіть рівняння кола радіуса 1, а координати центра:

а) (1; 1);        

б) (-1;   1);      

в) (1; -1);      

г) (-1; -1)

3)  укажіть координати центра і радіус кола, яке задане рівнянням:

a) (x  – 1)2 +  y2  = 9;          

б)  (x  + 1)2  + (у + 3)2 = 1;

в)  x2  + (y  + 1)2 = 2;          

г)  (x  +  1)2  +  (y  + 2)2  =  7.

4)    знайдіть на колі х2 + у2 = 100 точки:

а) з абсцисою 6;  

б) з ординатою 8.

 

iv.  закріплення й усвідомлення нового матеріалурозв'язування

1.    дано точки а(2; 1), в(-2; 5). складіть рівняння кола, діаметром якого є відрізок ав.2.    дано точки а(-1; -1) і с(-4; 3). складіть рівняння кола:

а) з центром у точці а і яке проходить через точку с;

б) з центром у точці с і яке проходить через точку а.

3.    знайдіть на осі ох центр кола, яке проходить через точку а(1; 4) і має радіус 5.4.    складіть рівняння кола з центром (1; 2), яке дотикається до осі ох.5.    складіть рівняння кола з центром (-3; -4), яке проходить через початок координат.6.    доведіть, що відрізок ав, кінці якого а(2; -5) і в(5; -2) є хордою кола (х - 5)2 +(у + 5)2 = 9.7.    чи перетинає коло (х + 4)2 + (у – 1)2 = 20 вісь оу? якщо перетинає, то в яких точках?

 

v. є завдання

вивчити рівняння кола та розв'язати і.

1.    коло задане рівнянням (х – 1)2 + (у + 3)2 =10. чи проходить це коло через початок координат? 2.    чи перетинає коло (х – 3)2 + (у + 5)2 = 26 вісь ох? якщо перетинає, то знайдіть точки перетину з віссю ох.3.    знайдіть рівняння кола, діаметром якого є відрізок ав, якщо а(8; 5), в(2; -3).

 

vi. підбиття підсумків уроку

завдання класу

1.    запишіть рівняння кола.2.    знайдіть координати центра і довжини радіусів кіл, зображених на рис. 142. запишіть рівняння цих кіл.

 

troian07
Построим сумму векторов а и b и их разность.
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129

Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

2. Найти расстояние от точки О до прямых AB иВС., если OЕ=5.​
Ваше имя (никнейм)*
Email*
Комментарий*