тригонометрические функции являются функциями от угла. они важны при изучении курса , а также при исследовании множества периодических процессов. тригонометрические функции определяют, обычно, как отношения длины определенных отрезков в единичной окружности или сторон прямоугольного треугольника. что касается более современных определений, то они выражают тригонометрические функции, как решение, например, дифференциальных уравнений или через суммы рядов. все это позволяет расширить область определения тригонометрических функций на произвольные числа, а в некоторых случаях даже на комплексные.
в настоящее время выделяют шесть основных тригонометрических функций:
косинус; синус; тангенс; котангенс; секанс; косеканс;Поделитесь своими знаниями, ответьте на вопрос:
1) даны точки a(2; -4; 6) и b(3; 0; 3 под каким углом отрезок ав видно сначала координат? 2)какая фигура не может быть основой правильной призмы? а) равносторонний треугольник б)ромб в)квадрат г)определить невозможно 3) периметр основания правильной треугольной призмы = 12 см.вычислите площадь боковой грани, если известно, что она представляет собой квадрат. а) 9см² б) 16см² в) 48см² г)24см² 4)в цилиндре высота и диагональ осевого сечения соответственно = 13см и 5см. чему равен радиус основания цилиндра. а) 12см б)8см в)6см г)4см 5) площадь основания правильной четырехугольной пирамиды = 50см ², боковое ребро - 13см. найдите высоту пирамиды. а) 10см б) 12см в)5см г)5 6)высота конуса = 6см, длина окружности его основания - 16п см. чему = образующая конуса? а) 10см б)2 в) 12см г) 8см 7) вычислите радиус круга, если площадь сечения круга плоскостью, проходящей через центр круга, = 16п см а) 2см б) 4см в)8см г)12см