Здесь составляем уравнение,по теореме пифагора.! возьмём второй катет за х . от сюда следует.- 12*12+х во второй степени(^2)=(х+8)скобка во второй степени. 144+х^2=х^2+16х+64 - тут +х^2 и -х^2 сокращаются 144-16х=64 16х=-144+64 16х=80 х=5см. продолжаем: 5+8=13. вот и нашли гипотенузу! ответ: 13см гипотенуза. была рада !
Екатерина
20.02.2021
Найдём радиус описанной окружности. длина стороны равна 45: 3=15 см. длина радиуса равна 2/3 медианы треугольника. медиана этого треугольника равна стороне треугольника умноженной на синус 60 градусов см см если поделить восьмиугольник на 8 треугольников, то угол, у центра окружности будет составлять 360⁰: 8=45⁰. треугольник равнобедренный, так как две его стороны от центра круга равны r. угол между ними равен 45⁰. противолежащая сторона и будет стороной восьмиугольника. применим теорему косинусов для нахождения искомой стороны см ответ: сторона восьмиугольника равна см
Less2014
20.02.2021
Если цилиндр вписан в призму, то трапеция описана около окружности основания. в описанном четырехугольнике суммы противоположных сторон равны, т.е. сумма оснований равна сумме боковых сторон и равна 16 см.. а средняя линия трапеции равна полусумме оснований, т.е. 8 см. для нахождения площади трапеции нужно знать ее высоту. проведем ее и найдем через синус угла α : h = 8sinα. s(полн) = p(осн)*н + 2s(осн) p = 16+16 = 32, h = 8, s = 16 * 8sinα/2 = 64sinα. s(полн) = 32 * 8 + 2*64sinα = 256 + 128sinα.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Один из катетов прямоугольного треугольника равен 12 см, а гипотенуза больше другого катета на 8 см. найти гипотенузу