ответ: вторая высота равна либо дм , либо 6 дм .
ΔАВС , АС=18 дм , АВ=12 дм , СМ ⊥ АВ , ВР ⊥ АС .
Одна из высот равна 4 дм .
Так как в условии не сказано, какая высота равна 4 дм , то рассмотрим два случая .
1) Пусть задана высота СМ=4 дм .
Запишем, чему равна площадь ΔАВС в двух вариантах.
S=0,5*AB*CM = 0,5*AC*BP ⇒ АВ*СМ=АС*ВР .
Заменим стороны и высоту известными числами .
12*4=18*ВР , 48=18*ВР , ВР=48:18=2 и 2/3 дм
2) Пусть задана высота ВР=4 дм .
Аналогично имеем АВ*СМ=АС*ВР , 12*СМ=18*4 , 12*СМ=72 ,
СМ=72:12=6 дм
1.
Найдем второй катет первого треугольника. Теорема Пифагора, квадрат гипотенузы равен сумме квадратов катетов
a²=5²-4²
a²=25-16
a²=9
a=√9
a=3
Второй катет 3
Сумма внутренних углов треугольника 180°.
У первого треугольника один угол 90°, второй 53°. Найдем меньший угол первого треугольника.
180°-90°-53°=37°.
Теперь найдем гипотенузу второго треугольника по теореме Пифагора.
c²=24²+18²
c²=576+324
c²=900
c=√900
c=30
Разделим все стороны второго на соответственные (больший делим на большую сторону, меньший на меньшую и т.д.) стороны первого.
Так как они все пропорциональны (признак подобия треугольников), эти два треугольника подобные, то есть углы одинаковые. Следовательно, меньший угол второго треугольника тоже 37°.
2.
Найдем катет первого треугольника по теореме Пифагора
a²=10²-8²
a²=100-64
a²=36
a=√36
a=6
Во втором треугольнике найдем гипотенузу по той же теореме.
c²=12²+16²
c²=144+256
c²=400
c=√400
c=20
Разделим соответственные стороны второго на первый:
Все стороны пропорциональны, значит они подобные. Меньший угол второго треугольника 36°.
Поделитесь своими знаниями, ответьте на вопрос:
Луч am-биссектриса угла а. на сторонах угла a отмечены точки b и c так, что уголamb=углуamc. докажите что ab=ac