Объяснение:
Внешний угол при вершине треугольника равен сумме внутренних углов треугольника, не смежных с ним.
Рассмотрим треугольник АВС.
Угол СВН - внешний угол при вершине, противоположной основанию.
ВМ- биссектриса этого угла. Она делит угол на два равных угла 1 и 2.
Так как внешний угол при В равен сумме внутренних углов А и С, а треугольник АВС равнобедренный и углы при его основании равны между собой, все выделенные углы также равны между собой.
Углы под номером 1 -равные соответственные при прямых АС и ВМ
и секущей АВ
Углы под номером 2 - равные накрестлежащие при прямых АС и ВМ
и секущей ВС
Если при пересечении двух прямых третьей внутренние накрестлежащие углы равны, то прямые параллельны.
Подробнее - на -
Пусть Н-проекция высоты на основание, она лежит на гипотенузе , так как грань . проходящая через гипотенузу-по условию перпендикулярна основанию.
Опуская перпендикуляры из Н к катетам основания-получаю НН1 и НН2.
С высотой пирамиды НS они образуют прямоугольные треугольники.
В этих треугольниках SH-общая высота и одинаковый угол бетта по условию.
Учитывая что высота в них может быть выражена SH=HH1*tgβ=HH2tgβ-следует
что НН1=НН2.
Теперь надо выразить это НН1 через а и ∠α. Н делит гипотенузу на две части b и a-b, выражу b через а...-второй рисунок
Высота пирамиды HS=HH1*tg β=a*sinα*cosα*tgβ/(sinα+cosα)
Площадь основания S(осн)=a^2*sinα*cosα/2
Тогда объем пирамиды V=S(осн)*SH/3=a^3*sin^2(2α)*tgβ/(24(sinα+cosα))
Поделитесь своими знаниями, ответьте на вопрос:
Точка м делит отрезок ав в отношении ам : мв= 1: 2. найти отношение ам : ав и мв : ав.