1)Задачи на построение пониманию учащимися происхождения различных геометрических фигур, возможности их преобразования - всё это является важной предпосылкой развития пространственного мышления школьников. Эти задачи развивают логическое мышление, геометрическую интуицию.
2)Целесообразно отметить следующие особенности условий задач на построение: в одних задачах данные фигуры могут быть без изменения сущности задачи заменены их мерами. Таковы, например, задачи построить треугольник по стороне, медиане другой стороны и радиусу описанной окружности; построить параллелограмм по его углу и диагоналям.
3)Любые, кроме круга.
4) 1.При циркуля можно измерить любой данный отрезок и отложить такой же от точки на прямой в любую сторону.
2.При циркуля можно провести окружность с центром в любой данной точке и радиусом, равным любому данному отрезку.
5)Не разрешается. Объяснение: Так как про построении используется нелинованное линейка( для соединения точек) и циркуль ( для переноса длины отрезка)
6).(B).(A).(C)
На прямой даны точки В и А. Выставляем раствор циркуля равным отрезку АВ и с центром в точке А проводим дугу до пересечения с прямой на продолжении луча ВА. Точка пересечения С и даст второй конец отрезка ВС в два раза большего, чем АВ.
7)От точки до края круга 2см, а до другого края 10см значит 10-2=диаметр круга=8, а радиус это половина диаметра 8/2=4
8)не знаю
9)Допустим: а=3см, b=1,5см (на фото ответ)
10)дано:
а=12 см
b=5 см
а) a+b=17 см
б) a-b=7 см
в) 2а=24 см
г) a+2b=22 см
д) 2a+b=29 см
Дано четырехугольник ABCD с вершинами в точках A (1 , - 5) , B (2 , 3) , C (- 3 , 1) , D (- 4 , - 7) и нам нужно доказать , что это четырехугольник является параллелограммом .
Мы доказываем с свойству четырехугольника . Знаем , если координаты середин отрезков AC и BD совпадают , то это четырехугольник ABCD является параллелограммом .
Найдём середин отрезков AC и BD :
а) A (1 , - 5) ; C (- 3 , 1) :
x = (1 - 3)/2 = - 1 ; y = (- 5 + 1)/2 = - 2 .
б) B (2 , 3) и D (- 4 , - 7) :
x = (2 - 4)/2 = - 1 ; y = (3 - 7)/2 = - 2 .
Видно координаты середин одинаковы , значит , четырехугольник ABCD является параллелограммом .
ответ : Четырехугольник ABCD является параллелограммом .
Поделитесь своими знаниями, ответьте на вопрос:
Два острых угла прямоугольного треугольника относятся как 4: 5. найдите больший острый угол. ответ дайте в градусах