Объяснение:
Школьные Знания.com
Какой у тебя вопрос?
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
kepchonok
kepchonok
16.06.2013
Геометрия
5 - 9 классы
+5 б.
ответ дан
Сколько сторон имеет выпуклый многоугольник,каждый угол которого равен: а) 90 градусов б) 60 градусов в) 120 градусов г) 108 градусов? с объяснением пож.)
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
4,2/5
598
Матов
главный мозг
7.3 тыс. ответов
2.6 млн пользователей, получивших
Сумма углов n-угольника равна 180°(n-2) где n - число сторон!
180°(n-2)=90n решаем уравнение
n=4 (то есть четырехугольник)
180°(n-2)=60n
n=3 треуголльник
180°(n-2)=120n
n=6 ( шестиугольник)
180°(n-2)=108 n
n=5 (пятиугольник)
Поделитесь своими знаниями, ответьте на вопрос:
Площадь поверхности правильной треугольной призмы равна 6. какой будет площадь поверхности призмы, если все ее ребра увеличить в три раза?
Геоме́трия (от др.-греч. γεωμετρία, от γῆ — земля и μετρέω — измеряю) — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения[1].
Женщина обучает детей геометрии. Иллюстрация из парижской рукописи «Начал» Евклида, начало XIV века.
Геометрия как систематическая наука появилась в Древней Греции, её аксиоматические построения описаны в «Началах» Евклида. Евклидова геометрия занималась изучением простейших фигур на плоскости и в пространстве, вычислением их площади и объёма. Предложенный Декартом в 1637 году координатный метод лёг в основу аналитической и дифференциальной геометрии, а задачи, связанные с черчением, привели к созданию начертательной и проективной геометрии. При этом все построения оставались в рамках аксиоматического подхода Евклида. Коренные изменения связаны с работами Лобачевского в 1829 году, который отказался от аксиомы параллельности и создал новую неевклидову геометрию, определив таким образом путь дальнейшего развития науки и создания новых теорий.
Классификация геометрии, предложенная Клейном в «Эрлангенской программе» в 1872 году и содержащая в своей основе инвариантность геометрических объектов относительно различных групп преобразований, сохраняется до сих пор
Объяснение:
И всё