сложность в том, что у меня нет возможности построить эту пирамиду, но поскольку тут проверяется масса формул, попробую объяснить без рисунка. объем пирамиды равен произведению трети площади основания на высоту. площадь основания - площадь правильного треугольника, равна а²√3/4, чтобы найти сторону основания а, надо связать ее формулой с радиусом вписанной в основание окружности, а₃=2r*tg(180°/3)=2r*tg60°=2r*√3, и тогда площадь основания 4*r²*3√3/4=r²*3√3; высота основания, т.е. высота правильного треугольника равна а₃√3/2=2r*√3*√3/2=3r, а треть высоты равна проекции апофемы на плоскость основания, угол, образованный апофемой и этой проекцией, и есть данный в условии, угол γ, т.к. апофема перпендикулярна стороне основания, то по теореме о трех перпендикулярах и проекция ей перпендикулярна. треть высоты основания равна 3r/3=r. чтобы найти высоту пирамиды, надо проекцию апофемы умножить на tgγ, т.е. высота равна r*tgγ.
объем пирамиды равен r²*3√3*r*tgγ/3=r в кубе √3*tgγ
ответка
Задайте свой вопрос и получите ответ от профессионального преподавателя. Выберите лучший ответ.
Подготовка к ЕГЭ Подготовка к ОГЭ Подготовка к олимпиаде Геометрия Алгебра Решение задач
Задать вопрос
Все вопросы
Нонна
Математика 5 - 9 классы
13.12.2019 18:05
Дан ромб ABCD, точка O пересечения диагоналей AC и BD, короткая диагональ равна стороне ромба.
1) Угол между векторами BA−→ и BD−→− равен °;
2) угол между векторами CB−→− и DA−→− равен °;
3) угол между векторами AB−→ и CA−→− равен °;
4) угол между векторами AD−→− и DB−→− равен °;
5) угол между векторами OB−→− и OC−→− равен
Поделитесь своими знаниями, ответьте на вопрос:
Диаметр основания конуса равен 36, а длина образующей - 30. найдите высоту конуса.