Конус.
∆АВС — осевое сечение.
∆АВС — правильный.
СВ — образующая конуса = 6.
Найти:S(поверхности конуса) = ?
Решение:Проведём высоту конуса СМ и рассмотрим отрезок ВМ — радиус основания конуса.
За счёт того, что ∆АВС — равносторонний, то ВМ = 0,5*СВ (по свойству равностороннего треугольника).
То есть —
ВМ = 0,5*6
ВМ = 3.
[Площадь поверхности конуса равна произведению π, радиуса основания конуса и образующей конуса].
То есть —
S(поверхности конуса) = π*ВМ*СВ
S(поверхности конуса) = π*3*6
S(поверхности конуса) = 18 (ед²)*π.
ответ:18 (ед²)*π.
Поделитесь своими знаниями, ответьте на вопрос:
Угол при вершине равнобедренного треугольника равен 60 градусов, боковая сторона равна 4. найдите длину высоты, проведённой к этой стороне.
Формула объёма конуса:
, где
S - площадь основания
h - высота конуса
Т.к. основанием конуса является круг, то
Формула площади круга:
, где
π - число пи
R - радиус круга
Как мы знаем радиус - половина диаметра ⇒ формула может выглядеть и так:
Получается формула объёма конуса становится такой:
Теперь пусть d - диаметр нового конуса, тогда 2,5d - первоначальный диаметр конуса
V₁ - первоначальный объём конуса, а V₂ - новый объём конуса
Получается:
Теперь ищем
ответ: в 6,25 раз уменьшится V конуса