Объяснение: ЗАДАНИЕ 1
По условиям ОА=ОС=радиусу=5. ОВ также радиус=5. Зная, что ВД=1, то ОД=ОВ-ВД=5-1=4. Рассмотрим ∆АОД и
СОД. Они прямоугольные, где ОА и ОС - гипотенуза, а ОД, АД, и СД - катеты и АД=СД, поскольку прямая ОВ проведена из центра окружности. Найдём по теореме Пифагора отрезки АД и СД.
АД=√(ОА²-АД²)=√(5²-4²)=√(25-16)=√9=3.
Итак: АД=СД=3, то тогда АС=3+3=6
ОТВЕТ: АС=6
ЗАДАНИЕ 2
Радиус ОВ, проведённый к точке касания образует с ней прямой угол 90°, поэтому ∆АОВ - прямоугольный, где АВ и ОВ- - катеты а ОА- гипотенуза. Зная, что АО=13, а АВ=12, найдём по теореме Пифагора радиус ОВ:
ОВ=√(АО²-АВ²)=√(13²-12²)=√(169-144)=
=√25=5
ОТВЕТ радиус ОВ=5
5 номер
В равнобедренном треугольнике две стороны равны.
По неравенству сторон треугольника знаем, что сумма двух сторон треугольника не может быть меньше третьей.
Предположим, что третья сторона равна 4 см.
Проверим, 4+4<9 - не подходит.
9+9>4 - подходит, значит, третья сторона = 9 см
6 номер
1)Рассмотрим треугольник DME:
предположим ,что угол DME - тупой (будет смежным с острым углом этого треугольника) и
угол DEM - острый (так как двух углов тупых не может быть в треугольнике по определению и признаку треугольника) .
2)Если напротив большего угла в данном треугольнике лежит самая большая сторона,то DE>DM.
7 номер
<B = 180° - (79°+ 55°)= 46° .
<C = 180° - ( 46° + 55°) = 79° .
< А = 55° (по условию).
Поделитесь своими знаниями, ответьте на вопрос:
5. высота вм, проведенная из вершины угла ромба авсд к стороне ад, образует со стороной ав угол в 30 градусов, ам = 4см. найдите длину диагонали вд ромба. можно с решением ? заранее