Найдите наибольшее и наименьшее значение функции f(x)=2x^3+6x^2-1 на отрезке [-2;1]
Объяснение:
f(x)=2x³+6x²-1
f ’(х)=6х²+12х=6х(х+2), f ’(х)=0.
6х(х+2)=0 ⇒х=0 или х=-2.
Указанному отрезку принадлежат обе точки.
Определяем знаки производной при переходе через точки :
f ’ +[-2]------(0)------[1]+
x=–2 – точка максимума, производная меняет знак с + на – .
x=1 – точка минимума , производная меняет знак с - на + .
Найдем значения функции в найденных точках и на концах отрезка, чтобы выбрать наибольшее и наименьшее значение функции :
f(-2)=2(-2)³+6(-2)²-1 =7,
f(1)=2*1³+6*1²-1 =7,
f(0)=2*0³+6*0²-1 =-1.
Наибольшее значение f(x)=7 на [-2;1] достигается в 2-х точках.
Наименьшее значение f(x)=-1 на [-2;1] достигается при х=0
Вычислить расстояние между серединами отрезков MN и PQ. Даны координаты точек: M(1;2;1) N(3;-1;4)
P(-2;3:-3) Q(-4;-2;2)
Объяснение:
M(1;2;1) N(3;-1;4) . О-середина MN , найдем координаты О.
х(О)= ( х(M)+х(N) )/2 , х(О)= (1+3 )/2 , х(О)= 2 ; у(О)= ( у(M)+у(N) )/2 , у(О)= ( 2-1 )/2 , у(О)= 0,5;
z(О)= ( у(M)+у(N) )/2 , z(О)= ( 1+4 )/2 , z(О)= 2,5;
О( 2 ;0,5; 2,5) .
P(-2;3:-3) Q(-4;-2;2) , А-середина РQ , найдем координаты т A.
х(A)= ( х(P)+х(Q) )/2 , х(A)= (-2-4 )/2 , х(О)= -3 ; у(A)= ( у(P)+у(Q) )/2 , у(A)= ( 3-2 )/2 , у(О)= 0.5 ;
z(A)= ( у(P)+у(Q) )/2 , z(A)= ( -3-+2)/2 , z(О)= -0,5;
A( -3 ;0,5;-0,5) . .
ОА=√(-3-2)²+(0,5-0,5)²+(-0,5-2,5)²=√(25+0+9)=√34 .
Поделитесь своими знаниями, ответьте на вопрос:
Плоскости альфа и бета параллельны. а-точка плоскости альфа. докажите, что любая прямая, проходящая через точку а и параллельная плоскости бета, лежит в плоскости альфа
если некоторая прямая а пересекает плоскость α то она пересекает также любую плоскость параллельную α.если а не параллельна плоскости β то она пересекала бы плоскость β значит и плоскость α а по условию α || β.значит а не может пересекать плоскость α и раз она имеет с плоскостью α общую точку а то а ⊂ α.