решение: 120+120=240 мм.=24см.
Объяснение:
Один катет лежит против угла в 60°, значит второй катет (а) лежит против угла в 90-60=30° и он равен половине гипотенузы (с) : с=2 а; по теореме Пифагора: (2 а) ^2=а^2+14^2; 3 а^2=196; а=√196/3=14/√3; с=2*14/√3=28/√3; площадь равна половине произведения катетов: S=14*14/2√3=98/√3; площадь равна половине произведения гипотенузы (основания) на высоту: 98/√3=h*28/2√3; h=98/14=7; ответ: 7 Можно по другому: h=a*b/c высота равна произведению катетов, деленная на гипотенузу. Это можно установить из подобия треугольников.
Объяснение:
Известно, что точка пересечения серединных перпендикуляров сторон AB и BC треугольника ABC находится на стороне AC.
1. Докажи, что AD=CD:
Точка D, как точка пересечения серединных перпендикуляров сторон AB и CB, равноудалена от конечных точек этих сторон ( от концов отрезков АВ и СВ) .Если AD =DB и DB = DC следовательно, AD =DC.
2. Определи вид треугольника ADB: -равнобедренный
3. Определи вид треугольника CDB: -равнобедренный
4. Примени соответственное свойство углов и докажи, что∡KBM=∡KAD+∡MCD:
∡ KAD = ∡ KВD, как углы при основании равнобедренного ΔADB ;
∡ MCD = ∡ MВD ,как углы при основании равнобедренного ΔCDB ;
5. Определи вид треугольника ABC: -прямоугольный ,равнобедренный .
Пояснения: Если ∡KAD=х , то ∡MCD=х, ∡KВМ=2х.
По т. о сумме углов треугольника х+2х+х=180° , х=45° ⇒ ∡KAD=45°, ∡MCD=45°, ∡АВС=90°
Поделитесь своими знаниями, ответьте на вопрос:
Найдите периметр описанава четырёхугольника, в котором сумма поролельных сторон ровна 120мм. !
описать вокруг окружности можно четырехугольник тогда и только тогда, когда сумма каждой пары противоположных сторон равна.
поскольку сумма одной пары равна 120 мм, сумма другой пары сторон тоже 120мм.
периметр этого описанного четырехугольника равен
120*2=240 мм