нехай авс - початковий трикутник (ав = вс), bd - висота, а о - центр вписаного кола. проведемо радіус ое, перпендикулярний стороні ав.
трикутники ове та авd подібні (прямокутні трикутники з спільним гострим кутом).
тоді відношення відповідних елементів рівні
ое аd 5
= =
ов ав 12
отже ad = 5 * 60 / 12 = 25 см.
Анна1169
23.12.2022
)длина вектора |ab| = √(12+32) = √10 б) разложение по векторам: ab = i+3j 2) а) уравнение окружности: (x-xa)2 + (y-ya)2 = |ab|2 (x+1)2 + y2 = 10 б) точка d принадлежит окружности, если |ad| = |ab| |ad| = √(())2 + (2-0)2) = √40 √40 ≠ √10 - точка d не принадлежит окружности 3) уравнение прямой имеет вид y = kx+b k = yab/xab = 3/1 = 3 0 = 3·(-1) + b b = 3 уравнение прямой: y = 3x+3 4) а) координаты вектора cd: cd = (5-6; 2-1) = (-1; 1) xab/xcd = 1/-1 = -1, yab/ycd = 3/1 = 3 -1 ≠ 3 - следовательно, векторы ab и cd не коллинеарные, и четырёхугольник abcd не прямоугольник. подозреваю, что координаты точки d должны быть (5; -2) тогда точка d также не принадлежит окружности , но: а) координаты вектора cd: cd = (5-6; -2-1) = (-1; -3) xab/xcd = 1/-1 = -1, yab/ycd = 3/-3 = -1 -1 = -1 - векторы ab и cd коллинеарны б) координаты вектора ad: ad = (); -2-0) = (6; -2) координаты вектора bc: bc = (6-0; 1-3) = (6; -2) xbc/xad = 6/6 = 1, ybc/yad = -2/-2 = 1 1 = 1 - векторы bc и ad коллинеарны. векторы лежат на попарно параллельных прямых, значит, четырёхугольник abcd - параллелограмм. cos (ab^bc) = (1·6+3·(-2))/(√(12+32)·√(62+(-2)2)) = 0 ab^bc = 90° если в параллелограмме один угол прямой, то остальные углы тоже прямые, и этот параллелограмм - прямоугольник.
Vladimir1172
23.12.2022
Провели высоту и получился прямоугольный треугольник. гипотенуза 17, один катет 16: 2= 8, другой катет х. высота в равнобедренном треугольнике является и медианой.значит, она делит сторону пополам,на которую она опущена. поэтому 16: 2=8 по теореме пифагора 17² = х² +8² 289 = х² +64 289-64 = х² 225 = х² х² = 225 х = √ 225 х = 15 это и есть высота,равная 15. ответ 15
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Центр кола вписаний в рівнобедрений трикутник ділить висоту як 12: 5, а бічна сторона = 60 см. знайти основу.
нехай авс - початковий трикутник (ав = вс), bd - висота, а о - центр вписаного кола. проведемо радіус ое, перпендикулярний стороні ав.
трикутники ове та авd подібні (прямокутні трикутники з спільним гострим кутом).
тоді відношення відповідних елементів рівні
ое аd 5
= =
ов ав 12
отже ad = 5 * 60 / 12 = 25 см.