Объяснение:
В осевом сечении получится равнобедренный ΔКВМ , с АС║КМ, ВН⊥КМ ,S(м)=7π, ВО/ОН=1/3.
S(круга)= π r², 7π=πr² , r=√7 , АО=√7.
ΔАВО подобен ΔКВН по двум углам: ∠А-общий,∠ВАО=∠ВКН как соответственные при АС║КМ, ВК-секущая.Значит сходственные стороны пропорциональны :
АО/КН=1/4=АО/КН
1/4=√7/КН
КН=4√7.
S(нижнего основания конуса Полученное сечение(круг) параллельно плоскости основания(кругу). Они подобны с к=1/4. Значит их площади относятся как к²⇒
S(м):S(б)=к² или 7π/S(б)=1/16 , S(б)=7π*16=112π.
Дано: треугольник ABC - равнобедренный;
BD - биссектриса;
угол ABD = 34°;
AC = 24 см
Найти: угол B; угол BDC; сторону DC
1) ∠В = 2 × ∠ABD = 2 × 34° = 68°, т. к. BD - биссектриса делит Abc на равные углы.
2) треугольник ABC - равнобедренный => биссектриса, проведённая к основанию, является высотой => BD⊥AC и ∠BDC = 90°.
3) треугольник ABC - равнобедренный => биссектриса, проведённая к основанию, является медианой => DC = 1/2 × AC = 1/2 × 25 = 12,5 см.
ответ: ∠В = 68°; ∠BDC = 90°; DC = 12,5 см.
Поделитесь своими знаниями, ответьте на вопрос:
Концы отрезка ab расположены по разные стороны от плоскости альфа и удалены от нее на 9см и 6см.точка c-середина ab.найдите проекции отрезков ас и bс на плоскость альфа, если ab=17см