∠DAB = 30°
Объяснение:
Вписанный угол равен половине дуги, на которую он опирается, значит
∠BCD = 1/2 ∪DB = 1/2 · 100° = 50°
∠BDC = 1/2 ∪CB = 1/2 · 40° = 20°
Угол между касательной и хордой равен половине дуги, заключенной внутри этого угла, значит
∠АВС = 1/2 ∪СВ = 1/2 · 40° = 20°
∠BCD - внешний для треугольника АВС. По свойству внешнего угла
∠BCD = ∠ABC + ∠BAC
∠BAC = ∠BCD - ∠ABC = 50° - 20° = 30°
∠DAB = 30°
_________________________________
Стоит запомнить, что угол между секущими, проведенными из одной точки (или между секущей и касательной, как в данном случае), равен полуразности дуг, заключенных между ними.
∠DAB = 1/2 (∪DB - ∪CB) = 1/2 (100° - 40°) = 1/2 · 60° = 30°
радиус окружности описанной возле правильного треугольника находится по формуле : R=корень из 3 делить на три и умноженный на сторону треугольника
R=корень из 3 деленный на три умножаем на 4 корня из 6
R=корень из 288 деленного на 3
R=12 корней из 2 и все это делить на 3
R=4 корня из 2
далее находим сторону квадрата вписанного в эту же окружности
радиус окружности треугольника равен радиусу окружности квадрата
радиус квадрата равен R=корень из 2 деленный на 2 и все это умножить на сторону квадрата (t)
выражаем t из этой формулы получаем
t= R делить на корень из 2 деленный на 2
t=4корня из 2 делить на корень из 2 деленный на 2
t=8 см
ответ: 8 см.
Поделитесь своими знаниями, ответьте на вопрос: