площадь полученного шестиугольника будет меньше площади данного шестиугольника на шесть площадей равных равнобедренных треугольников. у этих треугольников боковые стороны равны ½ стороны данного шестиугольника, а угол между ними равен 120⁰.
sδ= ½ ab · sin γ
s = ½ · ¼a² · (√3)/2 = (кв.ед.)
из формулы площади шестиугольника s= выражаем сторону а:
подставляя в формулу площади треугольника, находим, что sδ = 8/3 кв.ед.
6sδ = 16 кв.ед.
площадь полученного шестиугольника равна 64-16=48 (кв.ед.)
СА – касательная к окружности. Вычислите градусную меру угла АВО, если ∠ВАС=58°.
[3]
2. Равнобедренный треугольник АВС (АВ=ВС) вписан в окружность с центром в точке О. Найдите величины дуг АС, АВ и ВС, если ∠АОС=70°. [4]
3. В окружности с центром в точке О проведен диаметр РМ=16,8 см и хорда АК, перпендикулярная РМ и равная радиусу данной окружности. Диаметр РМ и хорда АК пересекаются в точке Е.
a) выполните чертеж по условию задачи;
b) найдите радиус окружности; [4]
c) найдите длину отрезка АЕ;
d) вычислите периметр треугольника АОК.
4. В прямоугольном треугольнике СОК ( О = 90°) , СК= 18, СКО = 30° с центром в точке С проведена окружность. Каким должен быть ее радиус, чтобы:
а) окружность касалась прямой КО; [4]
b) окружность не имела общих точек с прямой КО;
c) окружность имела две общие точки с прямой КО?
5. Постройте треугольник АМР по сторонам АM=7 см, МK=6 см и углу ∠АМР = 45о. В полученном треугольнике постройте серединный перпендикуляр к стороне АР
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Площадь правильного шестиугольнику равна 64. найти площадь шестиугольника последовательным соединением середин его сторон?
данный правильный 6-иугольник состоит из 6 правильных треугольников со стороной а. s = 6*[a^2 *(кор3)/4] = 64.
новый 6-иугольник также будет правильным, но со стороной b, равной апофеме исходного 6-иугольника:
b = a(кор3)/2.
его площадь:
s1 = 6*[b^2 *(кор3)/4] = (3/4)*6*[a^2 *(кор3)/4] = (3/4)*s = 48.
ответ: 48