Объяснение:
1.
Дано: ΔАВС - прямокутний, ∠В=90°, АВ=ВС=10√2. R - ? r - ?
АС²=АВ²+ВС²=(10√2)² + (10√2)² = 200+200=400; АС=20.
Центр описаного кола припадає на середину гіпотенузи, отже
R=АО=ОС=20:2=10 од.
r=(a+b-c)/2=(10√2 + 10√2 - 20)\2 = (20√2 - 20)/2 = (20√2 - 1)/2 = 10√2 - 1 од.
2.
Катети трикутника а, в, гіпотенуза с. Тоді за умовою
а+в+с=24; а²+в²+с²=200; а²+в²=200-с², за теоремою Піфагора а²+в²=с²
200-с²=с²; 200=2с²; с²=100; с=10 см.
а+в+10=24; а+в=24-10=14 см.
Нехай а=х, тоді в=14-х.
х²+(14-х)²=10²
х²+196-28х+х²-100=0
2х²-28х+96=0
х²-14х+48=0
х=8 та х=6
а=8 см; в=6 см
S=1/2 * 8 * 6 = 24 cм².
Поделитесь своими знаниями, ответьте на вопрос:
Медиана см треугольника abc в 2 раза короче стороны ав. найдите значение числа р‚ если а(—6; —з), м(3; —1) и с(р; 6)
Длина отрезка АМ = √(3-(6))²+(-1+3)²) = √(81+4) = √85.
Составляем уравнение окружности (х-3)²+(у+1)² = 85.
Ордината точки нам известна у = 6, подставляем её в уравнение и находим неизвестную величину р = х:
х² - 6х + 9 + (6 + 1)² = 85.
Получаем квадратное уравнение х² - 6х + 9 -27 = 0.
Квадратное уравнение, решаем относительно x:
Ищем дискриминант:D=(-6)^2-4*1*(-27)=36-4*(-27)=36-(-4*27)=36-(-108)=36+108=144;
Дискриминант больше 0, уравнение имеет 2 корня:
x_1=(√144-(-6))/(2*1)=(12-(-6))/2=(12+6)/2=18/2=9;
x_2=(-√144-(-6))/(2*1)=(-12-(-6))/2=(-12+6)/2=-6/2=-3.
Это и есть 2 значения параметра р:
р₁ = 9,
р₂ = -3.