Если катет и противолежащий острый угол одного прямоугольного треугольника соответственно равны катету и противолежащему острому углу другого прямоугольного треугольника, то такие треугольники равны.
В прямоугольном треугольнике катету противолежит острый угол ( прямой противолежит гипотенузе) и сумма острых углов 180°-90°=90°.
Поэтому: если противолежащий катету острый угол одного прямоугольного треугольника равен противолежащем острому углу другого, то прилежащие к равным катетам острые углы также равны
К равным катетам этих треугольников прилежат равные углы: прямой ( по условию) и найденный острый.
Такие прямоугольные треугольники равны по 2-му признаку равенства треугольников, т.е. по стороне и прилежащим к ней углам.
Поделитесь своими знаниями, ответьте на вопрос:
Конус, радиус основания которого равен 15 дм, а высота 20 дм, имеет общее основание с полушаром. найдите площадь поверхности полушара, находящейся: а) внутри конуса
AD=DE=15
BD=20
по теореме Пифагора
AB=25
треугольники FBE и EDA подобны
FB/AD=FE/ED
тк AD=ED то FB=FE
запишем теорему Пифагора для треугольника FBD
FB^2+BD^2=(FE+ED)^2
FB^2+400=(FB+15)^2
FB=35/6
из подобия треугольников FBE и EAD получаем
AE/ED=18/7
DG/GB=18/7
DG+GB=20
GB=28/5
HG=3/5 - высота сегмента шара, находящегося внутри конуса
S=2пRH=2п*15*(3/5)=18п