Обозначим данные точки А, В и С. Эти три точки можно соединить одним единственным в фигуру из трех точек и трех отрезков. Т.е. в треугольник , для которого предлагается построить два подобных с коэффициентом подобия k=3 и k=0,5 ( См. рисунки вложения)
Продлим ВС и АС и с циркуля 3 раза отложим длину этих сторон. Получим СА1=3АС и СВ1=3ВС. Угол А1СВ1 получившегося треугольника равен углу ВСА ( вертикальные). Треугольники АВС и А1В1С подобны по пропорциональным сторонам и равному углу между ними. Аналогично строится треугольник А2СВ2, подобный треугольника АВС с k=0,5. Для этого сначала делим две стороны пополам деления отрезка пополам циркулем Вы, конечно, уже знаете).
На сторонах угла ВАС от А циркулем на АС и АВ откладываем равные отрезки АМ и АК. Соединим М и К. На произвольной прямой отмечаем т.А1 и чертим окружность радиусом, равным АК. Точку пересечения с взятой прямой отмечаем К1. От К1 на окружности циркулем отмечаем точку М1 так, что К1М1=КМ. Из центра А1 окружности поводим прямую А1М1. Угол, равный углу ВАС исходного треугольника, построен. На прямых А1М1 и А1К1 откладываем стороны нужной длины: А1С1=3АС и А1В1=3 ВС и соединяем их. Аналогично для треугольника с k=0,5 откладываем половины длин сторон АС и АВ треугольника АВС и соединяем их. Стороны построенных треугольников пропорциональны сторонам исходного, а углы между ними равны углу ∆ АВС.
Дано: ΔАВС
АВ=ВА
(О; r) - вписанная окр.
ВМ⊥АС
ВО=13 см
ОК= r = 5 см
Найти: Р ΔАВС
1) Из прямоугольного ΔВОК по теореме Пифагора
ВК² = ВО² - ОК²
ВК² = 13²- 5² =169-25=144
ВК=√144 = 12 см
2) ∆ОВК~∆МВС (подобен), т.к. оба прямоугольные с общим углом ∠МВС.
Соответственные стороны пропорциональны:
ВМ : МС = ВК : ОК
18 : МС = 12 : 5
МС =18 · 5:12 = 7,5 см
АС = 2 · МС = 2·7,5 = 15 см.
3) По теореме Пифагора из ∆ВМС найдем ВС.
ВС² = ВМ² + МС²
ВС² = 18² + 7,5² = 324 + 56,25 = 380,25
ВС=√380,25 = 19,5 см
4) АВ = ВС = 19,5 см
АС = 15 см
Р= АВ+ВС+АС
Р = 2*19,5 + 15 = 54 см
ответ: 54 см
Поделитесь своими знаниями, ответьте на вопрос:
Хорды ав и сd пересекаются в точке е. найдите величину сd, если ае=4см, ве=9см, а длина се в четыре раза больше длины de.
АЕ·ЕВ = СЕ· ЕD
4·9 = 4x ·x
x² = 9
x = 3