а)Сумма углов четырехугольника АВДС равна 360 градусов. Поэтому, чтобы найти угол АСД надо из 360 отнять сумму заданных углов. Т.е. угол ACD= 360-(43+45+ 137)=360-225=135 градусов. б)Угол BDC =45 градусам, ABD=137 градусам, это внутренние односторонние углы при прямых АВ и DC и секущей BD. Для того, чтобы прямые АВ и DC были параллельны, надо чтобы сумма указанных углов была 180 градусов, а у нас 45+ 137= 182, т.е. эти прямые не параллельны, значит, они имеют общую точку и, если АВ и DC продолжить, то они пересекутся.
Поделитесь своими знаниями, ответьте на вопрос:
10 прямой треугольной призме abca1b1c1, угол acb=90 градусов, угол bac=60 градусов, ас=а. прямая b1c составляет с плоскостью грани аа1с1с угол 45 градусов. найдите площадь боковой поверхности призмы."
Угол АСВ=90° (дано). Призма прямая ⇒ все ее боковые грани - прямоугольники. Катет АС треугольника АВС прилежит углу 60°, ⇒ гипотенуза АВ=АС:cos60°=a:0,5=2a. Катет ВС=АВ•sin60°=2a•√3/2=a√3. В1С1 перпендикулярен плоскости АА1С1С, следовательно, перпендикулярен А1С1, а СС1 – проекция наклонной В1С. По условию ∠В1СС1=45°. Значит, В1С – биссектриса прямого угла, угол С1В1С=45°, и ∆ В1С1С - равнобедренный, поэтому высота призмы СС1=В1С1=ВС=а√3 Формула площади боковой поверхности призмы Ѕ=Р•Н (произведение периметра основания и высоты призмы). S=(а+2а+а√3)•a√3=a²•(3+√3)