ainud
?>

Найдите площадь поверхности сферы, если площадь боковой поверхности вписанного в сферу конуса с основанием, с сечением сферы проходящим через её центр, равна 6√2

Геометрия

Ответы

malgoblin2663
Если основание конуса совпадает с сечением сферы, то радиус  основания конуса R и радиус сферы совпадают.
Площадь боковой поверхности конуса равна:
Sбок к = πRL.
Образующая конуса в данном примере равна R √2.
По условию задачи 6√2 = πR²√2.
Отсюда находим радиус:
R = √(6/π).
Площадь поверхности сферы S = 4πR² = 4π*(6/π) =24 кв.ед.
mstapottery
Сделаем рисунок трапеции ABCD (BC||AD), проведём в ней диагонали AC и BD. (Рисунок простой, каждый сможет сделать его)
Через вершину С проведём параллельно диагонали ВD прямую до пересечения с продолжением АD в точке Е.  Обратим внимание на то, что четырехугольник ВСЕD - параллелограмм. ( Если две стороны четырехугольника равны и параллельны - этот четырехугольник - параллелограмм).
Следовательно, ВС=DЕ, и АЕ равно сумме оснований. 
Опустим высоту СН на АD/
Площадь треугольника АСЕ равна СН*(АD+DЕ):2
Но площадь трапеции также равна  СН*(АD+DЕ):2 .
Площадь трапеции равна произведению ее высоты на полусумму оснований. )
Высота СН для треугольника и трапеции - общая, а
(АD+DЕ):2 - есть полусумма оснований=средняя линия трапеции.и АЕ равна сумме оснований, т.е средняя линия, умноженная на 2.
 Итак, зная диагонали трапеции и ее среднюю линию, можно найти ее площадь по формуле Герона. Это свойство трапеции желательно запомнить.  

[email protected]
chapaevval
Тк  все ребра  равны  и углы  при ребрах равны  и прямые.Это  говорит о том что пирамида правильная.Тк все треугольники  боковой  поверхности равны.
Тогда в основании  правильный треугольник.боковая  поверхность  cостоит  из  3 равнобедренный  прямоугольных треугольников.Площадь  каждого их них можно выразить  через гипотенузу (cторону основания) S=1/4 *a^2  ,тогда  H=3/4 *a^2
a=sqrt(4H/3)=2*sqrt(H/3)
площадь основания площадь равностороннего треугольника.So=a^2*sqrt(3)/4=
4H*sqrt(3)/4*3=H*sqrt(3)/3=H/sqrt(3)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Найдите площадь поверхности сферы, если площадь боковой поверхности вписанного в сферу конуса с основанием, с сечением сферы проходящим через её центр, равна 6√2
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Kashtanov Anna
elenalukanova
Urmanov19903131
mbobo28311
bugaevnicky
Yekaterina
kbndbyb6
k-serga1
dawlatowajana
Stanislavovna1237
fakelel
nopel91668
Ladyby6224
igschuschkov6211
Marianna45