Артур
?>

Площадь полной поверхности прямого кругового конуса равна 253 см2 , а площадь боковой поверхности -11см2. найдите длину образующей конуса

Геометрия

Ответы

Vladislav98
Площадь боковой поверхности конуса вычисляется по формуле:
Sбок = πRL (R - радиус основания,  L - длина образующей)
Площадь полной поверхности конуса равна:
Sпол = Sбок + πR²
253 = 11 + πR² ---> πR² = 253 - 11 = 242 ---> R = √(242/π)
Подставим в формулу для площади боковой поверхности
11 = πL · √(242/π)
121 = π²L²·242/π
L² = 121/(242π) = 1/(2π)
L = 1/√(2π)
ответ: 1/√(2π)
S.V. Zhoraevna1677
Sполн=Sбок+Sосн
253=11+Sосн
Sосн=242
Исходя из того, что у кругового конуса в основании - круг
Sосн=πR²
Найдем радиус R=√Sосн/π=√242/π=11√2/π
Исходя  из площади боковой поверхности Sбок=πRL, найдем образующую
L=Sбок/πR=11/π*11√2/π=1/√2π≈0,4
nikolotovas
Смотрите вложенный файл. Там чертеж. 
Допустим,около окружности описан квадрат(правильный четырехугольник),а в окружность вписан квадрат так,что вершины квадрата совпадают с точками касания окружности и описанного квадрата. (на чертеже все видно!)
Сторона описанного квадрата равна 2а. В точке касания она делится пополам,и эти "половинки" равны а.
Образуется прямоугольный треугольник. Из него получаем:
а²+а²=2а²
Тогда сторона вписанного квадрата равна а√2
Периметр вписанного квадрата равен p=4а√2
Периметр описанного квадрата равен P=8а
p/P=(4а√2)/(8а)=√2/2(это отношение периметров)
Площадь вписанного квадрата s=(a√2)²=2a²
Площадь описанного квадрата S=S₂=(2a)²=4a²
Отношение площадей:
s/S=(2a²)/(4a²)=1/2

ответ: √2/2;1/2
Вокружность вписан правильный четырехугольник, и вокруг этой окружности описан правильный четырехуго
Mikuspavel2

1) 

Радиус вписанной окружности правильного многоугольника совпадает с его апофемой (т.е. перпендикуляром, опущенным из центра на любую сторону) 

Правильный шестиугольник можно разделить на 6 правильных треугольников. Его площадь равна площади 6 таких треугольников и  S(шестиугольника)=6•S (треуг) 

Нам известен радиус вписанной в шестиугольник окружности, т.е. высота правильного треугольника АОВ (см. рисунок). Для нахождения площади правильного треугольника воспользуемся формулой 

S= \frac{h^2}{ \sqrt{3} }

Тогда S _{6} = \frac{6* 3^{2} }{ \sqrt{3} }18 \sqrt{3} дм²

––––––––––

2)

По условию 2 \pi r_{1}-2 \pi r _{2} =2 \pi R

Примем коэффициент отношения радиусов окружностей равным а. Тогда радиус первой равен 5а, второй –3а

5a-3a=40⇒

a=20 см

r1=100 см=1м

S1=π•1²=π м²

60 см=0,6 м 

S2=π•(0,6)²=0,36 м²

–––––––––––

3)

 Найдите площадь сегмента круга, радиуса 4 см, если его хорда равна 4√2 см

Пусть центр круга О, хорда - АВ. 

АО=ВО ⇒∆ АОВ - равнобедренный

По т.косинусов АВ²=АО²+ВО²- 2АО•ВО•cos∠AOB

32=2•16-2•16•cosAOB⇒

cos AOB=0, ⇒ ∠АОВ=90°. 

Площадь искомого сегмента равна разности площадей сектора с углом 90° и прямоугольного ∆ АОВ. 

Градусная мера полного круга 360°, значит, площадь сектора с углом 90°=1/4 площади круга 

S сектора=16π:4=4π

S ∆ АОВ=4•4:2=4•2

S сегм=4π-4•2=4(π-2)= ≈4,566 см²

4)

Отношения отрезков сторон треугольника АВС, на которые их делят данные точки,  одинаковы.

 Примем коэффициент отношения отрезков сторон равным а. 

Тогда АВ=7а. 

Треугольники у вершин подобны треугольнику АВС, т.к. имеют общую вершину и  стороны исходного треугольника пропорциональны сторонам треугольников, «отсекаемых» от него у вершин, с коэффициентом подобия 7:2, Поэтому эти отсекаемые треугольники равновелики. 

 Отношение площадей подобных треугольников равно квадрату коэффициента подобия. 

k=АВ:ВК=7:2 ⇒

S (ABC):S(BKM)=k²= 49/4

 245:S(BKM)=49:4⇒

S(Δ BKM)=20

S(ТКМОНР)=245-3•20=185 мм²


Надо 1. найдите площадь правильного шестиугольника, описанного около окружности, радиус которой раве

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Площадь полной поверхности прямого кругового конуса равна 253 см2 , а площадь боковой поверхности -11см2. найдите длину образующей конуса
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

avanesss
yaart-klementiev29
gilmore886173
krtatiana69
karpov68
ajuli2
Pochkun-Oleg
АлександрАнатолий
ЕлизаветаВладимирович
druzjkinaas22
rgmarket
dawlatowajana
rykovatv6
ryazantseva
alekbur