Что дальше?не понятно какой именно угол. При определении угла пишут 3 буквенных значения
istok11
25.10.2021
См. рисунок в приложении Пусть ребро АА₁ образует со сторонами основания АВ и AD угол в 60°. Соединяем точку А₁ с точкой D. В треугольнике АА₁D AA₁=2 м AD=1 м ∠A₁AD=60° По теореме косинусов A₁D²=AA₁²+AD²-2·AA·₁AD·cos60°=4+1-2·2·1(1/2)=3 A₁D=√3 м Треугольник A₁AD- прямоугольный по теореме обратной теореме Пифагора: АА₁²=AD²+A₁D² 2²=1+( √3 )² A₁D⊥AD В основании квадрат, стороны квадрата взаимно перпендикулярны АС⊥AD Отсюда AD⊥ плоскости A₁CD ВС || AD BC ⊥ плоскости A₁CD
ВС⊥A₁C
A₁C перпендикулярна двум пересекающимся прямым ВС и СD плоскости АВСD По признаку перпендикулярности прямой и плоскости А₁С перпендикуляр к плоскости АВСD A₁C - высота призмы A₁C=Н Из прямоугольного треугольника A₁DC: А₁С²=А₁D²-DC²=(√3)²-1=3-1=2 A₁C=Н=√2 м
S(параллелепипеда)=S(осн)·Н=АВ²·Н=1·√2=√2 куб. м
manuchar-formen2
25.10.2021
Решение:
1). Пусть искомый треугольник - ABC, а высота - BH.
Рассмотрим треугольник ABH (или CBH) он прямоугольный, т.к. высота перпендикулярна основанию AC, и
образует с ним 2 прямых угла: AHB и CHB.
2). Т.к. высота в равнобедренном треугольнике - медиана, то AC=AH+HB=2AH, => AH=0.5AC
3). По условию задачи AC=AB+5, => AB=AC-5
4). Пусть длина стороны AC - x.
Тогда по Теореме Пифагора:
AB^2=AH^2+BH^2
5). Составим уравнение, используя все даннын, для выражения всех сторон, кроме заданной высоты, через
AC-x:
(x-5)^2=(0.5*x)^2+20^2
x^2-10x+25=0.25x^2+400
0.75x^2-10x-375=0|÷5
0.15x^2-2x-75=0
x1, 2=30;-16*2/3 ,=> x=30, т.к. длина (модуль) не может быть отрицательным.