Дано :
KP || NM.
∡NKP = 120°, ∡NKM = 90°.
Найти :
∡N = ?
∡M = ?
При пересечении двух параллельных прямых секущей сумма внутренних односторонних углов равна 180°.Рассмотрим параллельные прямые КР и NM при секущей KN. По выше сказанному ∡N + ∡NKP = 180°⇒∡N = 180° - ∡NKP = 180° - 120° = 60°.
Рассмотрим эти же прямые при секущей КМ.
∡NKM + ∡MKP = ∡NKP⇒∡MKP = ∡NKP - ∡NKM = 120° - 90° = 30°.
При пересечении двух параллельных прямых секущей внутренние накрест лежащие углы равны.Следовательно, ∡MKP = ∡M = 30°.
∡N = 60°, ∡M = 30°.
Объяснение:
(х – а)² + (у – b)² = R² – уравнение окружности, записанное в общем виде, где (а; b) – координаты центра окружности; R – радиус окружности. Из условия задачи известно, что уравнение окружности проходит через точку 8 на оси Ox, то есть через точку с координатами (8; 0), и через точку 4 на оси Oy, то есть через точку с координатами (0; 4). При этом центр находится на оси Oy, значит, точка (0; b) является центром окружности. Подставляя поочередно координаты этих точек в уравнение, получим систему двух уравнений с двумя неизвестными:
(8 – 0)² + (0 – b)² = R² и (0 – 0)² + (4 – b)² = R²;
(8 – 0)² + (0 – b)² = (0 – 0)² + (4 – b)²;8² + b² = (4 – b)²;
b² – 8 ∙ b + 4² – 8² – b² = 0;
8 ∙ b = – 48;
b = – 6, тогда, R = 10, и уравнение окружности примет вид:
х² + (у + 6)² = 10².
ответ: х² + (у + 6)² = 10² – уравнение данной окружности.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите полную поверхность прямого параллелепипед, стороны основания которого равны 8 дм и 12 дм и образуют угол в 30, а боковое ребро равно 6 дм
S(ABCD)=AB·AD·sinA=8·12·sin30=48
S(боковой поверхности)=2S(AA1D1D)+2S(BB1A1A)=6·12·2+6·8·2=240
S(всей поверхности)=2S(ABCD)+S(боковой поверхности)=336