ответ: вариант 1) 9,25м²;
Вариант 2) ,9,18м²
Объяснение: чтобы найти площадь всей поверхности конуса нужно сложить 2 его площади: площадь основания его и площадь боковой поверхности. Площадь основания вычисляется по формуле:
S=πr², где r- радиус конуса. Так как диаметр=4м, то радиус:
r=4÷2=2м.
Sосн=π×2²=4π(м²)
Площадь боковой поверхности конуса вычисляется по формуле: Sбок=πrL, где L- длина боковой поверхности конуса. Так как радиус, высота и длина боковой поверхности конуса образуют прямоугольный треугольник, где радиус и высота являются катетами а L- гипотенуза, найдём L по теореме Пифагора: L²=r²+h²=2²+1,5²=4+2,25=6,25; L=√6,25=2,5м
Теперь найдём площадь боковой поверхности конуса, зная L:
Sбок=π×r×L=π×2×2,5=5π(м²); Sбок=5π(м²)
Теперь найдём полную площадь конуса:
Sпол=Sбок+Sосн=5π+4π=9π(м²)
Sпол=9π(м²)
Если брать в расчет, что брезента уйдёт 5% от боковой поверхности, то на швы понадобится: 5π×5÷100=25π/100=π/4м
Вариант 1) на швы понадобится π/4(м)
Если 5% от всей площади поверхности, то: 9π×5/100=45π/100=9π/50м
Вариант 2) на швы понадобится 9π/50м
Поэтому полных метров уйдёт:
Вариант 1) 9π+π/4=
=(36π+π)/4=37π/4=9,25π(м²)
Вариант 2) 9π+9π/50=459π/50=9,18π(м²)
ответ: S=96
Объяснение: обозначим вершины параллелограмма А В С Д, а его высоты ВН1 и ВН2. Пусть одна его стороны АВ=СД=а, вторые ВС=АД=b. Зная, что площадь параллелограмма - это произведение его стороны и высоты, которая проведена к стороне, составим уравнение согласно формуле площади:
S=b×BH1. Так как площадь будет одинаковой независимо от того какой вариант мы выберем, то:
b×BH1=a×ВН2
4b=12√3a
b=12√3a/4
b=3√3a
Высота ВН1 образует прямой угол 90° также со стороной ВС, поэтому
угол СВН=90-60=30°. Рассмотрим полученный ∆СВН2. Он прямоугольный где ВН2 и СН2 -катеты, а ВС- гипотенуза. Так как сумма острых углов прямоугольного треугольника составляет 90°, то угол С=90-30=60° . В параллелограмме противоположные углы между собой равны, поэтому
угол А=углу С=60°. Рассмотрим полученный ∆ АВН1. Он прямоугольный, где АН1 и ВН1 катеты, а АВ - гипотенуза. Угол АВН=90-60=30°. Катет лежащий напротив него равен половине гипотенузы, поэтому АН=а/2. Составим уравнение используя теорему Пифагора:
АВ²-АН1²=ВН1²
а²-а²/2²=4²
а²-а²/4=16. Здесь ищем общий знаменатель и получаем:
(4а²-а²)/4=16
3а²/4=16
3а²=4×16
3а²=64
а²=64/3
а=√64/3
а=8/√3
Если сторона а=8/√3, тогда
сторона b=8/√3×3√3=24
Теперь найдём площадь параллелограмма, зная его стороны:
S1=8/√3×12√3=96
S2=24×4=96
Поделитесь своими знаниями, ответьте на вопрос:
Периметр параллелограма равен 126см.найдите его стороны, если две из них относятся как 4: 5
4x+5x=63
9x=63
x=7
Одна сторона равна 4x=4*7=28
Вторая сторона 5x=5*7=35
ответ: 1 - 28 2 - 35