Востроугольном треугольнике авс проведены высоты см и an. известно, что ac=2, а площадь круга, описанного около треугольника mbn, равна . найдите угол между высотой cm и стороной вс
Пусть Д — точка пересечения высот СМ и АN ΔABC. Из точек М и N отрезок BД виден под прямым углом, значит, эти точки лежат на окружности с диаметром BД (это и есть окружность, описанная около ΔМВN с радиусом R). Площадь окружности S=πR², откуда R²=S/π=π/3π=1/3 R=1/√3. Отрезок AС виден из точек М и N под прямым углом, значит точки М и N лежат на окружности с диаметром AС. По условию <AВС острый, т.е. меньше 90°. Тогда <AСВ =<AСN = 180°-<AMN =<BMN. Значит ΔCBА и ΔMBN подобны по 2 углам, тогда МВ/СВ=ВN/ВА=МN/АС. Из прямоугольного ΔВАN найдем ВN/ВА=cos B. МN/АС=cos B MN=2cos B. Также по теореме синусов MN=2R*sin B=2sin B/√3 Приравниваем 2cos B=2sin B/√3 sin B/cos B=√3 tg B=√3 <B=60° Значит <ВСМ=180-90-60=30° ответ: 30°
bb495
13.11.2022
Треугольник MNK, MN=NK=корень из 3, угол N=120 гр., NP-высота Решение: Т.к. в равнобедренном треугольнике высота является также биссектрисой и медианой, значит MP=PK, угол MNP=углу PNK=60гр. Рассмотрим прямоугольный треугольник MNP. Т.к. угол P=90 гр, угол N=60 гр, значит угол М=30 гр. Следовательно, NP=1/2 MN=(корень из 3)/2 (катет против угла 30 гр. равен половине гипотенузы) По теореме Пифагора: MP= корень из (MN^2-NP^2)=1,5 см Значит МК=2*1,5=3 см Периметр треугольника MNK=3+корень из "3"+корень из "3"=3+2 корня из "3"
Annabill1987
13.11.2022
А). Цитата: "Существование и единственность вневписанной окружности обусловлены тем, что биссектрисы двух внешних углов треугольника и биссектриса внутреннего угла, не смежного с этими двумя, пересекаются в одной точке, которая и является центром такой окружности". В треугольнике АВС <ABC+<BCA=180°-<A. <ABC=180°-<CBP, <BCA=180°-BCK - как пары соответственно смежных углов. Окружность (Q;R) - вневписанная окружность треугольника АВС по определению (из условия). Следовательно, BQ и СQ - биссектрисы углов <CBP и <BCK соответственно. Тогда <BQC=180°-(1/2)*(CBP+BCK)=180°-(1/2)*(360°-<ABC-<BCA). Или <BQC=(1/2)*(<ABC+<BCA). Но <BQC - вписанный угол, опирающийся на дугу ВС, а <BOC- центральный угол, опирающийся на ту же дугу. <BOC=2*<BQC = <ABC+<BCA = 180°-<A. Тогда в четырехугольнике АВОС сумма противоположных углов <А+<BOC=<A+180°-<A = 180°. Значит около этого четырехугольника можно описать окружность и при том только одну. Следовательно, окружности, описанные около треугольника АВС и четырехугольника АВОС - одна и та же окружность и точка О лежит на этой окружности, что и требовалось доказать.
б). Пусть R/r=4/3. r=(3/4)*R. <А+<BOC= 180° (доказано выше). CosA = -Cos(180-A) = -Cos(BOC). ВС - общая хорда пересекающихся окружностей. По теореме косинусов из треугольника ОВС: BC²=2R² - 2R²Cos(BOC)=2R²+ 2R²CosA=2R²(1+CosA) . (1) Bз треугольника AВС: <BJC - центральный угол, опирающийся на ту же дугу, что и <BAC. <BJC=2<A. BC²=2r² - 2r²Cos(BJC)=2r²(1-Cos2A) . (2) Приравняем (1) и (2): 2R²(1+CosA)=2r²(1-Cos2A) или 2R²(1+CosA)=2(9/16)R²(1-Cos2A) или (1+CosA)=(9/16)(1-Cos2A). По формуле приведения Cos2A= 2Cos²A-1, тогда 1+CosA=(9/16)(1-2Cos²A+1) => 1+CosA=(9/8)(1-Cos²A). Пусть CosA= Х, тогда: 8+8Х=9-9Х² или 9Х²+8Х-1=0 Х1=(-4+√(16+9))/9 = 1/9. Х2=-1 - не удовлетворяет условию, так как <A > 0. ответ: CosA=1/9.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Востроугольном треугольнике авс проведены высоты см и an. известно, что ac=2, а площадь круга, описанного около треугольника mbn, равна . найдите угол между высотой cm и стороной вс
Площадь окружности S=πR², откуда R²=S/π=π/3π=1/3
R=1/√3.
Отрезок AС виден из точек М и N под прямым углом, значит точки М и N лежат на окружности с диаметром AС. По условию <AВС острый, т.е. меньше 90°.
Тогда <AСВ =<AСN = 180°-<AMN =<BMN.
Значит ΔCBА и ΔMBN подобны по 2 углам, тогда МВ/СВ=ВN/ВА=МN/АС.
Из прямоугольного ΔВАN найдем ВN/ВА=cos B.
МN/АС=cos B
MN=2cos B.
Также по теореме синусов MN=2R*sin B=2sin B/√3
Приравниваем 2cos B=2sin B/√3
sin B/cos B=√3
tg B=√3
<B=60°
Значит <ВСМ=180-90-60=30°
ответ: 30°