i ab i² = i ac i² + i bc i² , поэтому по теореме, обратной теореме пифагора, треугольник авс прямоугольный.
Юлия1972
16.11.2020
Т. к. центр вписан. окр-ти делит высоту в отношении 5/3, то: bo/oh=5/3, bo+oh=32 = bh, отсюда можно найти bo=20 см. , oh = 12 см. oh - является радиусом вписанной окружности, r =oh=12 см. треугольник abc - равнобедр. , ab = bc. bh - высота, медиана и биссектриса, равна 32 см. радиус описанной окруж. можно найти по формуле: r = ab*bc*ac/4s =2*aс*ab^2/4s = ac*ab^2/2s s = 0.5 * ac*bh = 16ac r=ac*ab^2 /2*16*ac = ab^2/32 остается найти ab - тогда найдете и радиус описанной окружности.
Сопова
16.11.2020
Проведем из вершины отрезки , где точка пересечение с окружностью. обозначим точку перпендикуляра с . получим четырехугольник , который вписан в окружность. по теореме птолемея , так как лежит на центре , то треугольники прямоугольные. . откуда при подстановке получаем соотношение . так как четырехугольник прямоугольник. заметим что - высота прямоугольного треугольника , тогда . откуда по теореме пифагора , так как является высотой прямоугольного треугольника , то тогда
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Даны точки а(-1; 5; 3) в(7; -1; 3)с(3; -2; 6)доказать, что треугольник авс-прямоугольный.
i ab i² = (7 - (-1))² + (-1 - 5)² + (3 - 3)² = 64 + 36 + 0 = 100
i ac i² = (3 - (-1))² + (-2 - 5)² + (6 - 3)² = 16 + 49 + 9 = 74
i bc i² = (3 - 7)² + (-2 - (-1))² + (6 - 3)² = 16 + 1 + 26 = 26
i ab i² = i ac i² + i bc i² , поэтому по теореме, обратной теореме пифагора, треугольник авс прямоугольный.