Площадь осевого сечения цилиндра равна 108 см в квадрате, а его образующая в три раза меньше диаметра основания. найдите площадь полной поверхности цилиндра.
Осевое сечение - это прямоугольник, в котором длина - это диаметр цилиндра, а ширина = образующей ( высоте) цилиндра ( или наоборот) Образующая = х, диаметр = 3х х·3х + 108 3х² = 108 х² = 36 х = 6 ( высота H цилиндра) диаметр = 18⇒ радиус(R) = 9 S полн. = 2πRH + 2πR² =2π·9·6 + 2π·36 = 108π + 36π = 144π(cм²)
st7307
22.05.2021
Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость. АВ1 - проекция диагонали DB1 призмы на боковую грань АА1В1В. Значит угол АВ1D = α. Тогда сторона основания призмы (квадрата) АD=DB1*Sinα=а*Sinα. Диагональ основания ВD=а*Sinα√2. Высота призмы ВВ1=√(а²-2а²*Sin²α) или h=а√(1-2Sin²α). Объем призмы равен Vп=So*h, или а³Sin²α√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vп=64*(1/4)*√2/2=8√2. Объем описанного цилиндра равен So*h, где So=πR². R=BD/2=а*Sinα*(√2/2). So=πа²*Sin²α*(1/2). Объем цилиндра равен Vц=πа³*Sin²α*(1/2)*√(1-2Sin²α). При а=4 и Sin30° объем призмы равен Vц=π64*(1/4)*(1/2)*(√2/2)=π*4√2. ответ: Vп=8√2. Vц=π*4√2.
Lapushkin1988
22.05.2021
Задача 1 Дано: тр АВС р/б АС - основание АН - высота АН=24 см ВС=АВ=25 см Р-?
Решение: 1) Тр АВН (уг Н=90*) по т Пифагора ВН=√(625-576)=√49=7 см 2) НС=ВС-ВН, НС=25-7=18 см 3) Тр АНС ( уг Н=90*) по т Пифагора АС= √(576+324)=√900 = 30 см 4) Р(тр АВС) = 2*25 + 30 = 50+30 = 80 см
Задача 2 Дано: тр АВС - р/б АС - основание АН - высота АН=24 см АС=30 см Р(тр АВС) -?
Решение: 1) Тр АНС ( уг Н=90*) по т Пифагора НС = √((900-576)=√324 = 18 см 2) Пусть х см равен отрезок ВН, тогда каждая из боковых сторон р/б треугольника равна (х+18) см. По т Пифагора составляем уравнение: 576+x^2 = (x+18)^2 576+x^2 = x^2 + 36x + 324 36x=576 - 324 36x = 252 x=252:36 x=7 (cм) длина отр ВН 3) АВ=ВС = ВН+НС; АВ=ВС=7+18=25 (см) 4) Р(трАВС)= 25*2+30=50+30=80 см
Задача 1 дано: тр АВС р / б АС - підстава АН - висота АН = 24 см НД = АВ = 25 см Р- ? рішення: 1 ) Тр АВН ( уг Н = 90 * ) по т Піфагора ВН = √ ( 625-576 ) = √49 = 7 см 2 ) НС = НД - ВН , НС = 25-7 = 18 см 3 ) Тр АНС ( уг Н = 90 * ) по т Піфагора АС = √ ( 576 + 324 ) = √900 = 30 см 4 ) Р ( тр АВС ) = 2 * 25 + 30 = 50 + 30 = 80 см
Задача 2 дано: тр АВС - р / б АС - підстава АН - висота АН = 24 см АС = 30 см Р ( тр АВС ) - ? рішення: 1 ) Тр АНС ( уг Н = 90 * ) по т Піфагора НС = √ ( ( 900-576 ) = √324 = 18 см 2 ) Нехай х см дорівнює відрізок ВН , тоді кожна з бічних сторін р / б трикутника дорівнює ( х + 18 ) см . По т Піфагора складаємо рівняння : 576 + x ^ 2 = ( x + 18 ) ^ 2 576 + x ^ 2 = x ^ 2 + 36x + 324 36x = 576 - 324 36x = 252 x = 252 : 36 x = 7 ( cм) довжина отр ВН 3 ) АВ = ВС = ВН + НС ; АВ = ВС = 7 + 18 = 25 ( см ) 4 ) Р ( трАВС ) = 25 * 2 + 30 = 50 + 30 = 80 см
Образующая = х, диаметр = 3х
х·3х + 108
3х² = 108
х² = 36
х = 6 ( высота H цилиндра)
диаметр = 18⇒ радиус(R) = 9
S полн. = 2πRH + 2πR² =2π·9·6 + 2π·36 = 108π + 36π = 144π(cм²)