Расстояние от точки до плоскости равно длине перпендикулярного к ней отрезка.
Обозначим вершины ромба АВСD.
Точка L удалена от прямых, содержащих стороны ромба, на одинаковое расстояние. ⇒ наклонные, проведенные из L перпендикулярно к сторонам ромба, равны, и по т. о з-х перпендикулярах равны их проекции.
Эти проекции равны половине диаметра вписанной в ромб окружности, который равен высоте ВН ромба. Центр окружности лежит на пересечении диагоналей ромба.
ВН=АВ•sin 45°=(a√2)/2=a/√2.
Радиус ОK=а/2√2.
По т.Пифагора из ∆ LOK катет LO=√(LK²-OK²)
LO=√(b²- a²/8) Домножив в подкоренном выражении числитель и знаменатель на 2, получим LO=√[2•(8b²-a²):16]=[√2•(8b²-a²)]:4
Поделитесь своими знаниями, ответьте на вопрос:
Апофема правильной шестиугольной пирамиды равна 5, а площадь круга, описанного около основания пирамиды равна 12pi. найдите радиус шара, вписанного в эту пирамиду.
Найдем R из соотношения S=12π=πR^2, R=√12=3,46.
a=3,46 - 3,46(1 - √3/2)=3,46(1 - 0,134)=3, 2a=6. Площадь этого Δ :
s=a*h, h^2=L^2 - a^2, s=a*√(25 -9=12. Радиус шара, вписанного в пирамиду
равен радиусу вписанной в Δ окружности r = s/p = 12/8= 1,5.