Tatyana-Sergeevna108
?>

Диагонали трапеции делят ее среднюю линию на 3 отрезка, один из которых равен 3 см. найдите среднюю линию трапеции, если большое основание равно 14 см. ( ! )

Геометрия

Ответы

Ka-tja78
Пусть трапеция ABCD : AD  || BC ; AD>BC ; AD = 14см ; EF - средняя линия трапеции,
E∈ [AB] , F∈ [CD] ; M и  N - точки пересечении  средней линии   EF с диагоналями AC и BD соответственно .
a) EM =NF =3 см   или
 b) MN =3 см .

ЕF - ?

обозн. AD =a ,BC =b. 
EF =(a+b)/2 .

 EM = NF =BC/2 =b/2 . Действительно  EM и  NF средние линии в треугольниках 
 ABC и  BCD   соответственно(средняя линия треугольника  соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине ).
Аналогично из ΔABD :   EN = AD/2 =a/2       * * * или  из  ΔACD  :  MF = AD/2=a/2  * * * 
MN =EN - EM = a/2 -b/2 =(a-b)/2 .

а)  b = 2*EM =2*3 см =6 см ;
EF =(a+b)/2 =(14 см+6 см)/2 =10 см .
 b) MN =3 см.
MN =(a-b)/2   ⇒b =a -2MN ;
EF =(a+b)/2 =(a +a-2MN)/2 = a -MN =14 см -3 см = 11 см.

ответ :  10 см или 11 см.
dimaaristov
1. відповідь: а) р=36cм; б) s=24sqrt(3)см^2. а) знайдемо третю сторону за теоремою косинусів: с^2=a^2+b^2-2ab*cos(c)=16^2+6^2-2*16*6*cos(60градусів) =196 c=sqrt(196)=14. тому p=a+b+c=16+6+14=36. б) знайдемо площу за формулою: s=(ab*sin(c))/2=(16*6*sin(60градусів)) /2=24sqrt(3). 2. відповідь: сторона=4см, площа=16см^2. площа круга дорівнює pi*r^2. тому r=sqrt(8). сторона квадрата, вписаного в коло, дорівнює sqrt(2)*r= sqrt(2)*sqrt(8)=4. відповідно площа квадрата дорівнює 4^2=16. 3. відповідь: 384см^2. довжина першого катета дорівнює 12+20=32. бісектриса ділить сторону трикутника на відрізки, що відносяться як 2 інші сторони. тому (другий катет): (гіпотенуза) =12: 20=3: 5. нехай другий катет дорівнює 3х і гіпотенуза дорівнює 5х. тоді, за теоремою піфагора, (3х) ^2+32^2=(5х) ^2 16x^2=1024 x=8. тому другий катет дорівнює 3*8=24. площа прямокутного трикутника дорівнює половині добутку його катетів: s=32*24/2=384.
сергей1246

если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.

доказательство:

пусть прямые  а  и  b  параллельны и пересечены секущей cd. доказать, что накрест лежащие углы 1 и 2 равны.

предположим, что углы 1 и 2 не равны. тогда от луча cd отложим ∠еcd=∠2 так, чтобы ∠еcd и ∠2 были накрест лежащими углами при пересечении прямых се и  b  секущей cd.

по построению эти накрест лежащие углы равны, а поэтому прямая cd параллельна прямой  b. получили, что через точку с проходят две прямые (а  и cе) параллельные прямой  b. а это противоречит аксиоме параллельности прямых. следовательно, предположение неверно и угол ∠1=∠2. что и требовалось доказать.

пример.

прямая ав параллельна прямой cd, аd - биссектриса угла bac, а ∠adc=50 градусов. чему равна градусная мера ∠cad?

так как прямые ав и cd параллельны и ad - секущая при этих параллельных прямых, то накрест лежащие углы adc и bad равны. значит, ∠bad=50 градусов.

так как ad - биссектриса ∠bac, то ∠cad=∠bad. следовательно, градусная мера ∠cad=50 градусов.

пример.

прямые ав и cd параллельны. отрезок ав=сd. доказать, что прямая ас параллельна прямой bd.

рассмотрим треугольник abd и треугольник acd.

ав=cd по условию , ad - общая. а углы bad и adc равны как накрест лежащие углы при параллельных прямых ав и cd и секущей аd. следовательно, треугольники abd и acd равны по первому признаку равенства треугольников. а значит, у них соответственные стороны и углы равны.

то есть ∠cad=∠bda. а эти углы являются накрест лежащими при прямых ac и bd и секущей ad. это означает, что прямые ac и bd параллельны. что и требовалось доказать.

пример.

на рисунке ∠cbd=∠adb. доказать, что ∠вса=∠cad.

углы cbd и adb - накрест лежащие углы при прямых ad и bc и секущей bd. а так как эти углы равны, то прямые ad и bc параллельны.

∠вса и ∠cad являются накрест лежащими при параллельных прямых ad и bc и секущей ас, а следовательно, они равны. что и требовалось доказать.

отметим, что если доказана какая-либо теорема, то это не означает, что обратная ей теорема верна.

например, если углы вертикальные, то они равны. а вот если углы равны, то это ещё не означает, что они вертикальные.

1)если две параллельные прямые пересечены секущей, накрест лежащие углы равны.2)если две параллельные прямые пересечены секущей, то соответственные углы равны.3)если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180°.4)если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Диагонали трапеции делят ее среднюю линию на 3 отрезка, один из которых равен 3 см. найдите среднюю линию трапеции, если большое основание равно 14 см. ( ! )
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

websorokin
Olia72
sisychev
verachus
Евгеньевич-Куликов1614
format-l3364
vkorz594
fedoseevgleb
Railyan
FATAHOVAMAINA
dianabuchkina
Головин662
kokukhin
narkimry134
Вершинина1161
Дано круг ОМ=18 найти угол