Сергеевич1396
?>

Сторони двох подібних трикутників відносяться як 2: 5.як відносяться їх площі?

Геометрия

Ответы

Andreevna_Grebenshchikova155
ΔАВС и ΔА₁В₁С₁ подобны
SΔABC: SΔA₁B₁C₁=k²
(2:5)²=4:25
SΔABC: SΔA₁B₁C₁=0,16
ludakamasana

Две прямые касаются окружности (радиусом 9 см) с центром О в точках  Р и K и пересекаются в точке M. Найдите угол между этими прямыми, если ОМ = 18 см.

Объяснение:

Дано Окр О( R=9) , МР, МК-касательные , ОМ=18 см.

Найти ∠РМК.

Решение.

ΔРМО-прямоугольный, по свойству касательной. Т.к гипотенуза ОМ = 18 см, катет ОР =9 см в два раза меньше , то угол ∠РМО=30°.

Отрезки касательных к окружности, проведенных из одной точки М, равны и составляют равные углы ( это ∠РМО и ∠КМО ) с прямой, проходящей через эту точку и центр окружности ⇒∠РМО и ∠КМО.

Тогда ∠РМК=∠РМО + ∠КМО= 30°+30°=60°

ответ.∠РМК=60°

Corneewan

Две прямые касаются окружности (радиусом 9 см) с центром О в точках  Р и K и пересекаются в точке M. Найдите угол между этими прямыми, если ОМ = 18 см.

Объяснение:

Дано Окр О( R=9) , МР, МК-касательные , ОМ=18 см.

Найти ∠РМК.

Решение.

ΔРМО-прямоугольный, по свойству касательной. Т.к гипотенуза ОМ = 18 см, катет ОР =9 см в два раза меньше , то угол ∠РМО=30°.

Отрезки касательных к окружности, проведенных из одной точки М, равны и составляют равные углы ( это ∠РМО и ∠КМО ) с прямой, проходящей через эту точку и центр окружности ⇒∠РМО и ∠КМО.

Тогда ∠РМК=∠РМО + ∠КМО= 30°+30°=60°

ответ.∠РМК=60°

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сторони двох подібних трикутників відносяться як 2: 5.як відносяться їх площі?
Ваше имя (никнейм)*
Email*
Комментарий*