zmlavra
?>

Сторона ромба - 22 расстояние от центра ромба до нее равен 2 площадь ромба?

Геометрия

Ответы

andr77716
Диагонали при пересечении делят ромб на 4 равных по площади треугольника,
расстояние от центра ромба до стороны есть перпендикуляр(высота),по формуле площади треугольника,S=1/2*22*2=22
Т.к. ромб состоит из 4 таких треугольников,то Sромба=4*22=88
Сергеевич1726

меньший катет АС=6см, больший катет ВС=12√3 см

Объяснение:

обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:

\frac{ac}{ab} = \frac{ah}{ac}

теперь подставим наши значения в эту пропорцию:

\frac{ac}{24} = \frac{6}{ac}

перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:

АС ²=6×24=144

АС=√144=12см

Теперь найдём катет ВС по теореме Пифагора:

ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см


1)Проекція катетів прямокутного трикутника на гіпотенузу відповідно дорівнюють 18см і 6 знайдіть мен
milkiev
Значит так:
Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) .
Запишем неравенство:
O\ \textgreater \ P\ \textgreater \ N - всё это конечно углы.
Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N
Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP)
∠P>∠N
Значит против ∠Р лежит сторона, большая от стороны против угла N
И меньшая стороне NP. 
В итоге получаем:
NP>ON>OP
Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Сторона ромба - 22 расстояние от центра ромба до нее равен 2 площадь ромба?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vanvangog199826
voropayelena26
Shpunt-86
Антон
nikolai37
grekova5
Матвеев
rvvrps
Панков1101
Vyacheslav_Nikolaevna
smileystyle
Дружинин
ЕленаАнастасия315
mushatolga
aureole6452