ssitnickowa201244
?>

Abcd-прямоугольник, m-середина стороны bc, прямые ma, md взаимно перпендикулярны и что периметр прямоугольника abcd равен 24м. определитель его стороны

Геометрия

Ответы

Олег86

AB=CD=4 м, BC=AD=8 м.

Объяснение:

Решение в приложении.


Abcd-прямоугольник, m-середина стороны bc, прямые ma,md взаимно перпендикулярны и что периметр прямо
elegiy

Задача: Известно, что в треугольниках АВС и А1В1С1 А = А1, АВ = А1В1, АС = А1С1. На сторонах ВС и В1С1 отмечены точки К и К1, такие, что СК = С1К1. Докажите, что ∆ АВК = ∆ А1В1К1.

ответы:Δ АВС=ΔА1В1С1 по первому признаку равенства треугольников, так как  ∠А=∠А1, АВ=А1В1,АС=А1С1- по условию.

В равных треугольниках соответственные стороны равны,

значит ВС=В1С1, тогда ВК=В1К1, так как КС=К1С1 - по условию.

В ΔАВК иΔА1В1К1:

АВ=А1В1, ВК=В1К1, ∠В=∠В1, значит  ΔАВК =ΔА1В1К1 по первому признаку равенства треугольников, что и требовалось доказать.

Рисунок: картинка

apromovich1

Диагонали ромба делят его на 4 равных прямоугольных треугольника,катеты которых равны половине диагоналей.Обозначим диагонали через.3х и 4х.Тогда катеты прямоугольных треугольников равны.3х/2=1,5х и 4х/2=2х.По теореме Пифагора находим гипотенузу треугольника,то есть сторону ромба: а^2=(1,5х)^2+(2х)^2=2,24x^2+4x^2=6,25x^2; а=2,5х
Перемитр ромба равен 4а=200.Отсюда а=200/4=50.
Поэтому 2,5х=50.Отсюда х=50/2,5=500/25=20.
1,5х=1,5*20=30
2х=2*20=40
Площадь ровна 4 площади равных прямоугольных треугольников,т.е.
S=4*1/2*30*40=2*1200=2400 см^2=24 дм^2
ответ: S=24 дм^2

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Abcd-прямоугольник, m-середина стороны bc, прямые ma, md взаимно перпендикулярны и что периметр прямоугольника abcd равен 24м. определитель его стороны
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

barinovmisha2013
Узлиян Фурсов1488
ЛаринаЛощаков
Баринова
Irina_Nikolai
Васильевий
maxim-xx38
ver2bit29
allaraygor
tanya14757702
troyasport
avdeevau807
lelikrom2202
supply1590
Шитенков