Рассмотрим две пересекающиеся в точке M прямые a и b. Через две пересекающиеся прямые можно провести плоскость, назовем её P.
Проведем прямую c, которая пересекает прямые a и b в точках A и B соответственно.
A принадлежит a -> A принадлежит P
B принадлежит b -> B принадлежит P
-> прямая c лежит в плоскости P
с - произвольная прямая -> все прямые, которые пересекают a и b и не проходят через M - точку пересечения прямых a и b лежат с этими прямыми в одной плоскости.
Теперь рассмотрим случай, когда прямые проходят через точку пересечения M прямых a и b.
Возьмем произвольную точку N, которая не лежит в плоскости P и проведем прямую через точки N и M.
Прямая NM не принадлежит плоскости P.
Итак, основной вывод.
Прямые, которые пересекают две пересекающиеся прямые и не проходят через их точку пересечения всегда лежат с этими прямыми в одной плоскости.
Те прямые, которые проходят через точку пересечения пересекающихся прямых не всегда лежат с ними в одной плоскости.
1 Пусть по условию дано два смежных угла — ∠1 и ∠2.
1. Так как ∠1 и ∠2 смежные, то их сумма равна 180°:
∠1 + ∠2 = 180°.
2. По условию дано, что восьмая часть ∠1 и три четверти ∠2 в сумме составляют прямой угол. Прямой угол — это угол, равный 90°. Таким образом:
∠1/8 + (3 * ∠2)/4 = 90°.
3. Обозначим ∠1 как x, а ∠2 как y. Получим систему линейных уравнений с двумя неизвестными:
x + y = 180°;
x /8 + (3 * y)/4 = 90°.
В первом уравнении выразим x через y:
x = 180° - y.
Полученное выражение подставим во второе уравнение:
(180° - y)/8 + (3 * y)/4 = 90°;
(180° - y + 2 * 3 * y)/8 = 90°;
(180° - y + 6 * y)/8 = 90°;
(180° + 5 * y)/8 = 90°;
180° + 5 * y = 8 * 90° (по пропорции);
5 * y = 720° - 180°;
5 * y = 540°;
y = 540°/5;
y = 108°.
Найдем значение x:
x = 180° - y = 180° - 108° = 72°.
Таким образом:
∠1 = x = 72°;
∠2 = y = 108°.
4. Найдем разность двух смежных углов:
∠2 - ∠1 = 108° - 72° = 36°.
ответ: 36°.
5а+а=180
меньший смежный угол равен
180/6=30
больший смежный угол равен
180-30=150
соответственно, биссектриса бОльшего угла делит этот угол одинаковые части по
150/2=75°
такой угол биссектриса большего угла составляей с ближайшей к ней стороной меньшего угла
Найдем угол, который биссектриса большего угла
составляет с дальней стороной меньшего угла, он равен
75+а=75+30=105
Поделитесь своими знаниями, ответьте на вопрос:
б) остальные неизвестные величины выразить через х
в) составить формулу функции, минимальное( максимальное ) значение которой в задаче имеется.
г) исследовaть её на min (max)
Пусть разговор идёт про точку М. Её координаты буду х и (6 - х)
Расстoяние от начала координат =|ОМ|. Именно ОМ должно быть минимальным. ОМ является функцией от х. Надо ОМ найти. Будем искать по т.Пифагора.
ОМ² = х² + (6 - х)² ⇒ ОМ = √(х² + 36 -12х +х²) = √(2х² -12х + 36)
Значит, у = √(2х² -12х + 36)
Проведём исследование этой функции на min
Производная = 1/2√(2х² -12х + 36) · ( 4х - 12)
Приравниваем её к нулю. Ищем критические точки
1/2√(2х² -12х + 36) · ( 4х - 12) = 0⇒ 4х - 12 = 0⇒ 4х = 12⇒х = 3
(2х² -12х + 36≠0)
-∞ - 3 + +∞
Смотрим знаки производной слева от 3 и справа
Производная меняет свой знак с " - " на " + " ⇒ х = 3 - это точка минимума.
ответ: точка М имеет координаты (3;3), ОМ = √(9 + 9) = √18 = 3√2