Задача 1.
Пусть ВС=CD=х, тогда АВ=3+х. Составим и решим уравнение:
3+х+х+х=9
3х=6
х=2.
Получается, ВС=CD=2 см.
ответ: 2 см.
Задача 2.
∠1=∠3=20 градусов (т.к. соответственные);
∠1=∠4= 20 градусов (т.к. вертикальные);
∠4=90 градусов (по условию)
∠5=180-20=160 градусов.
∠2=160-90=70 градусов.
ответ: 70 градусов.
Задача 3.
Если дочертить отрезки АР, ВР, АО и ВО, можно заметить, что образовался четырехугольник. АВ и РО -его диагонали. Т.к. они точкой пересечения поделились пополам, то данная фигура - ромб. У ромба все стороны равны => АР+ВР=АО+ВО.
Поделитесь своими знаниями, ответьте на вопрос:
Сторона ромба 20 см а острый угол равен 30 градусов найдите площадь ромба
d^2 = a^2 + a^2 - 2a*a*cos 30 = 2a^2 - 2a^2*√3/2 = a^2*(2 - √3)
d = a*√(2 - √3) = 20√(2 - √3)
Если один угол равен 30, то второй, смежный, равен 180 - 30 = 150.
Найдем длинную диагональ
D^2 = a^2 + a^2 - 2a*a*cos 150 = 2a^2 - 2a^2*(-√3/2) = a^2*(2 + √3)
D = a*√(2 + √3) = 20√(2 + √3)
Площадь ромба равна половине произведения его диагоналей.
S = D*d/2 = 20*20/2*√(2 - √3)*√(2 + √3) = 200*√(4 - 3) = 200