ответ:
по одной из формул: площадь треугольника равна половине произведения длин его сторон на синус угла между ними.
при пересечении диагоналей вертикальные углы равны.
пусть ∠аов=∠doc=α тогда смежные им ∠doa=∠boc=180°- α. sinα=sin(180°- α)
примем ао=а, во=b, со=с, do=d. тогда:
s(aob)=a•b•sinα/2
ѕ(doc)=d•c•sinα/2
s(aob)•ѕ(doc)=a•b•c•d•sin²α/4
s(aod)=a•d•sinα/2
s(boc)=b•c•sinα /2
s(aod)•s(boc)=a•d•b•c•sin²α/4
a•b•c•d•sin²α/4 =a•d•b•c•sin²α/4 ⇒
s(aob)•ѕ(doc)= s(aod)•s(boc), что и требовалось доказать.
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренной трапеции abcd a=d=45градусов, bc=4см, а высота трапеции равна 3см. найдите среднюю линию трапеции
проведём вк|ad и см|ad.
треугольник авк = треугольнику сdм - прямоугольные, равнобедренные (угол авк = углу dсм = 90-45 = 45 град), => ak=bk=cm=dm =3 (см)
ад=ак+км+dм=10 (см) (км=вс=4см)
(вс+аd): 2=(4+10): 2=7 (см) - средняя линия