ответ: √39 см.
Объяснение:
1)Т.к. боковые рёбра наклонены к основанию на одинаковый угол⇒
основание высоты пирамиды находится в центре описанной около основания окружности; а₃=6 см по условию и а₃=R√3 ⇒ R=а₃:√3;
R=6:√3=2√3 (см).
2) Высота пирамиды ⊥ плоскости основания ⇒ h⊥R и
tg60°=h:R ⇒ h=R*tg60°=2√3*√3=2*3=6 (см).
3) а₃=2r√3, где r- радиус вписанной в основание окружности;
r=а₃:2√3=6:2√3=3:√3=√3 (см).
4) Пусть х- апофема пирамиды ⇒ х - гипотенуза прямоугольного треугольника с катетами r и h. Из теоремы Пифагора:
х=√(r²+h²)=√(√3²+6²)=√(3+36)=√39 (см).
Дано:
Правильная усеченная пирамида
(ребро)
(диагональ)
Найти:
1) Проведём две высоты к плоскости ABCD из вершин и И отметим их как и соответственно.
2)Рассмотрим полученный треугольник ; По чертежу видно, что этот треугольник прямоугольный и один из его острых углов равен 60 градусов, что означает что второй его угол равен 30 градусам, следовательно если нам известна , то можно и найти
(Против угла в 30 градусов лежит катет равный половине гипотенузы).
3)Поскольку пирамида правильная, то высоты, которые были проведены в 1 пункте делят диагональ квадрата ABCD на 3 отрезка, причем
4) Используя правило прямоугольного треугольника, при двух его известных сторонах и углу, можно найти другую сторону этого треугольника:
5)Следует детально рассмотреть треугольник В нем известны две стороны, и он прямоугольный, а значит можно найти по теореме Пифагора. .
6)Отсюда можно найти .
. Знаю эту величину можем найти искомую АB.
Поскольку в основании правильной усеченной четырёхугольной пирамиды лежит квадрат. ; Но также стоит заметить, что , но второй намного легче, чем мучиться с преобразованием корневых выражений.
ответ: AB= двум корней из двух плюс 4
Поделитесь своими знаниями, ответьте на вопрос:
Точка b делит отрезок аc на два отрезка. найдите длину отрезка вс если а) ab = 3, 7 см, ас = 7, 2 см, б) ав = 4 мм, ас= 4 см.
b)4cm -4mm=40mm-4mm=BC - 36mm или 3,6 cm