Построение ясно из рисунка. Поскольку плоскость проходит через точки В,С и М, значит она проходит через среднюю линию MN грани АСD, параллельную ребру ВС. Продлим прямые ВМ и СN до их пересечения в точке Р. Треугольник ВРС равнобедренный, следовательно вершина S пирамиды SBPC спроецируется на высоту PF основания ВРС, являющуюся и медианой основания, в точке Н. Расположение точки Н на прямой PF зависит от угла SQF между плоскостями ВРС и АSВ. В нашем случае этот угол тупой, поэтому точка Н лежит вне грани АSD пирамиды SABCD.
Так как пирамида правильная, в основании - квадрат. Диагональ квадрата равна в нашем случае 6√2. Ее половина ОС=3√2. Высота пирамиды по Пифагору SO=√(SC²-OC²)=√(144-18)=3√14. Необходимо найти перпендикуляр SH к плоскости BCMN. Вариант решения - через подобие прямоугольных треугольников SHE и FOE по равным острым углам при вершине Е. Углы SHE и EOF - прямые. Из этого подобия имеем соотношение: SH/FO=SE/EF и SH=FO*SE/EF. Высота пирамиды SO=3√14 (по Пифагору из треугольника SOC). Тогда QG=0,5*SO (так как MN - средняя линия треугольника ASD, и значит QG - средняя линия треугольника KSO). Из подобия треугольников QGF и EOF имеем ЕО=FO*QG/FG. FO=3, QG=1,5√14, FG=4,5. Тогда ЕО=3*1,5√14/4,5=√14 и, следовательно, SE=SO-EO=2√14. EF находим из треугольника EOF по Пифагору: EF=√(OF²+OE²)=√(9+14)=√23. Тогда SH=3*2√14/√23. ответ: SH=6√14/√23.
vladimirkirv
04.09.2021
Обозначим трапецию АВСД, с большим основанием АД. Тогда опустим из угла С высоту СК к этому основанию. Получим треугольник СКД. Это равнобедренный треугольник,т.к угол СКД 90 градусов, а СДК 45(соответственно, другой угол тоже 45) Сторона СК=АВ=9см (т.к получается,что это стороны прямоугольника АВСК. Соответственно, сторона КД=СК=9см(тк треугольник равнобедренный). Сторона АД=23 см, а КД=9 см, тогда найдем длину АК: 23-9=14 см. Вернемся к прямоугольнику АВСК, в котором ВС=АК=14см. При этом, сторона ВС является меньшим основанием трапеции.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Периметр параллелограмма равен 60 см.найти длины его сторон, если диагональ делит угол параллелограмма на части 30 градусов и девяносто градусов
P=(a+b)*2
60=(2x+x)*2
60=6x
x=10
в итоге 2x=20