Объяснение:
Рассмотрим △AOD и △BOC. У них OD=OB+BD, OC=OA+AC. По условию OA=OB, AC=BD, значит и OD=OC. Угол COD у них общий, а стороны OB=OA, значит △AOD=△BOC по 1му признаку. => <ODA=<OCB
Рассмотрим △DEB и △CEA. У них <DEB=<CEA как верт., <BDA=<ACB из равенства тр-ков, выше. Значит и оставшиеся углы <EBD=EAC. По условию BD=AC, значит △DEB=△CEA по 2му признаку. =>EB=EA
Рассмотрим △EBO и △EAO. EB=EA, OB=OA, а OE - общая, значит △EBO=△EAO по 3му признаку. => <BOE=<AOE, то есть OE - биссектриса угла XOY
Насчёт вопроса как построить - я думаю так: берём угол и откладываем от его вершины 2 равных (для удобства) отрезка на одном и луче и такие же два равных на другом. Соединяем конец большого отрезка на одном луче с серединой такого же отрезка на другом. И также с другим отрезком. Место их пересечения - точку соединяем с вершиной угла и получится биссектриса. Собственно всё как на этом рисунке, только я предлагаю все отрезки сделать равными.
См. рис. во вложении
Для построения будем использовать свойста подобия треугольников.
1. Дано: два угла и отрезок.
2. Строим вс треугольник с углами альфа и бета и произвольными сторонами а1 , в1 и с1
3. К отрезку а1+в1 к крайней точке восстанавливаем перпендикуляр длиной с1. Проводим к его концу прямую и получаем угол фи.
4. К отрезку а+в проводим в левой крайней точке луч под углом фи, а справа перпендикуляр. Пересекаясь с перпендикуляром прямая отсечет на ней отрезок с, т.к. треугольники будут также подобны.
5 По двум углам и полученной строне с строим искомый треугольник. Проверяем совпала ли сумма а+в полученных с заданными. Должна совпасть, если все сделали правильно.
Поделитесь своими знаниями, ответьте на вопрос: