Сторона ромба равна 28:4=7, Тупые углы по 180-60=120 Проводим диагональ из тупого угла. Образовавшиеся углы по 60Есть 2а решения1) Рассмотрим треугольник, образованный 2-я сторонами и диагональю. Угол между Сторонами равен 60 по условию. Sin 60 равен 0,866 Находим площать этого треугольника по формуле S= 1/2 ab* Sin между ab Получается 1/2*7*7*0,866= примерно 21 Умножаем на 2, т.к. ромб состоит из 2-х таких треугольников, получается примерно 42 (если точно, то 42,434) 2) Проведем высоту из вершины угла 60 на диагональ. Получаем прямоугольный треугольник с углами 30 и60. Находим сторону напротив угла 30 (половина диагонали из тупого угла) сторона ромба* на синус 30= 7*1/2=3,5 Находим по теореме Пифагора последнюю сторону- примерно 6 см. Далее находим площадь S=1/2 a*h получаем 3,5.6*1/2= 10,5 Умножаем на 4-е (т.к в ромбе 4 таких треугольника) получаем 10,5*4= 42
zoocenterivanoff51
02.06.2022
Дано: а, в – прямые, АВ – секущая,угол 1 и угол 2 – накрест лежащие, угол 1=угол 2. Доказать: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Доказательство: Рассмотрим если угол 1= 2угол=90 градусов Отсюда следует, а и в перпендикулярны к прямой АВ и, следовательно, параллельны. Теорема: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
djevgen
02.06.2022
Дано: а, в – прямые, АВ – секущая,угол 1 и угол 2 – накрест лежащие, угол 1=угол 2. Доказать: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны. Доказательство: Рассмотрим если угол 1= 2угол=90 градусов Отсюда следует, а и в перпендикулярны к прямой АВ и, следовательно, параллельны. Теорема: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Периметр ромба равен 72 а один из углов равен 60 найдите площадь ромба