Aivazyan
?>

Дан треугольник dkc. окружность, проходящая через точки d и c и касающаяся прямой dk, вторично пересекается с лучом kc в точке j. чему равен радиус проведенной окружности, если cos jkd = 1/5√10, jk = 24, а kc =15?

Геометрия

Ответы

Nadezhda Malakhov53
Если окружность КАСАЕТСЯ отрезка DK и одновременно проходит через точку D,
значит точка D является ТОЧКОЙ КАСАНИЯ. По теореме о касательной и секущей: квадрат отрезка касательной от данной точки до точки касания равен произведению длин отрезков секущей от данной точки до точек её пересечения с окружностью, то есть DK²=KC*KJ=15*24=360.
Итак, DK=√360=6√10. Найдем DC по теореме косинусов:
DC²=DK²+KC²-2*DK*KC*Cos(DKC). DC²=360+225-2*6√10*15*(1/5)√10=225. DC=15.
Следовательно, треугольник DCK равнобедренный (DC=KC) и значит 
<CDK=<CKD(<JKD). То есть Cos(CDK)=(1/5)*√10.
Градусная мера <CDK равна половине градусной меры дуги DC (по свойству угла
между касательной и хордой, проведенной в точку касания), а градусная мера
центрального угла DOC равна градусной мере  дуги DC. То есть <DOC=2*<CDK.
В нашем случае Cos(<CDK)=(1/5)*√10.  Тогда
Sin(<CDK)=√(1-Cos²(<CDK))=√(1-10/25)=√(15/25)=(1/5)*√15.
По формуле приведения cos2a=cos²a-sin²a.
В нашем случае Cos(<DOC)=10/25-15/25=-5/25=-0,2.
В треугольнике ОDC по теореме косинусов
DC²=OD²+OC²-2*OD*OC*Cos(<DOC) или
225=2R²-2R²*(-0,2) или 225=2R²(1+0,2). Отсюда R²=225/2,4.
R= 15/√2,4≈9,677≈9,7.
ответ: радиус проведенной окружности равен 9,7.

Второй вариант решения:
Продлим DO до пересечения с окружностью в точке М.  Углы <DMC=<CDK (Так как оба опираются на одну дугу DC и равны половине ее градусной меры. <DMC - как вписанный, а <CDK - по свойству угла  между касательной и хордой, проведенной в точку касания). Тогда Sin(DMC)=Sin(<CDK)=(1/5)*√15. (Найдено в первом варианте).
Но вписанный   треугольник DMC прямоугольный, так как DM - диаметр. Тогда DM=DC/Sin(DMC) = 15/[(1/5)*√15]=5√15. DM - диаметр.
Значит радиус R=(5/2)*√15 ≈9,68≈9,7.
ответ: радиус проведенной окружности равен (5/2)*√15.

Дан треугольник dkc. окружность, проходящая через точки d и c и касающаяся прямой dk, вторично перес
fotostock

пирамида КАВС, К-вершина, АВС-равносторонний треугольник, проводим высоту ВН на АС, О-пересечение медиан=высот=биссектрис- центр основания пирамиды, КО-высота пирамиды, КН-апофема=6, площадь боковая=1/2*периметр*апофема, 162=1/2*периметр*6, периметр=54, АВ=ВС=Ас=54/3=18, ВН=АВ*корень3/2=18*корень3/2=9*корень3, ОН=1/3ВН (медианы в точке О делятся в отношении 2/1), ОН=9*корень3/3=3*корень3,

треугольник КНО прямоугольный, КО=корень(КН в квадрате-ОН в квадрате)=корень(36-27)=3=высота пирамиды

объем=1/3*площадьАВС*КО=1/3*(АВ в квадрате*корень3/4)*3=(18*18*корень3*3)/(3*4)=81*корень3

s-laplandia6
Окружность описана вокруг прямоугольника. 
Диаметром описанной окружности является диагональ прямоугольника . 
Найдем этот диаметр из формулы площади круга:
S=πr² 
r²=S:π
r²=π(169:4):π
r=13/2
d=2r=13 см
Расстояние от точки до прямой - отрезок, перпендикулярный этой прямой.
Расстояние от вершины B до прямой, содержащей диагональ AC, - это высота ВН ⊿АВС, опущенная из прямого угла на гипотенузу АС. 
Высота прямоугольного треугольника, проведенная из вершины прямого 
угла, есть среднее пропорциональное между отрезками, на которые делится гипотенуза этой высотой.
 ВН²=АН*НС
Пусть АН=х, тогда НС=13-х
36=х(13-х)
х²-13х+36=0
Решив квадратное уравнение, получим два корня: 4 и 9.
АН=4, НД=9
По т.Пифагора из прямоугольного треугольника АВН найдем АВ.
АВ²=36+16=52
АВ= √52
ВС²=81+36=117 
ВС=√117
Площадь прямоугоольника равна произведению его сторон:
S=АВ*ВС=√52*√117=√6084=78 см² 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дан треугольник dkc. окружность, проходящая через точки d и c и касающаяся прямой dk, вторично пересекается с лучом kc в точке j. чему равен радиус проведенной окружности, если cos jkd = 1/5√10, jk = 24, а kc =15?
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

baron
Бочкова_Елена203
coleslow12
Skvik71
ikosheleva215
vbnm100584
Демидова Красноцветов
axo4937
Лихачев Полина1978
druzhbamagazin2457
Batrakova-Anna
egoryuzbashev
andr77716
Pona4ka93
arionul-secondary2